

Manipal School of Information Sciences (MSIS)

Manipal Academy of Higher Education, Manipal

Outcome Based Education (OBE) Framework

Two Year full time Postgraduate Program

Master of Engineering - ME (Embedded Systems)

TABLE OF CONTENTS

Contents

NATURE AND EXTENT OF THE PROGRAM	3
PROGRAM EDUCATION OBJECTICE (PEO)	4
GRADUATE ATTRIBUTES	5
QUALIFICATIONS DESCRIPTORS	8
PROGRAM OUTCOMES1	0
COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS	5)
	3

NATURE AND EXTENT OF THE PROGRAM

An engineering graduate skillset requirement is changing with invent of the new technologies. In particular, the impact of Embedded Systems provides a high employability in the industry. Embedded Systems is a large scale implementation technology which is embodied in a wide spectrum of microcontrollers, processors, networked products, systems, and sensors, which take advantage of advancements in computing power, electronics miniaturization, and network interconnections to offer new capabilities which was not previously possible.

Master of Engineering - ME (Embedded Systems) Program is a comprehensive two-year postgraduate program, which aims to provide hands-on experience to prepare industry-ready Embedded Systems professionals. The program Master of Engineering - ME (Embedded Systems) helps engineering graduates to specialize in the field of Embedded Systems and enables them to learn how Embedded Systems devices can be programmed and developed for Varity of application domain. The Embedded Systems program balances between the treatment of high-level systems design and the engineering of subsystem components. One set of courses relate to the central ideas of systems development: Linux device drivers, computer architecture, micro-controllers, and the general ideas of embedded systems design. The other set of courses include the study of principles of real-time operating systems, design of data structures and algorithms, and digital signal processing.

Master of Engineering - ME (Embedded Systems) postgraduate degree would welcome graduates from any discipline with 50% mark in qualifying exam. Students after successfully completing the program will get career opportunities as a consumer electronics, telecommunications, automotive, aerospace and defence, industrial electronics, robotics.

PROGRAM EDUCATION OBJECTICE (PEO)

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for

Master of Engineering - ME (Embedded Systems) program are as follows.

PEO No	Education Objective						
	Enable to draw upon fundamental and advanced knowledge in order to apply						
PEO 1	analytical and computational approach to solve technological problems in						
	embedded systems.						
	Introduce state of art technologies in the area of embedded system and						
PEO 2	inculcate ethical practices to make industry ready professional.						
	Promote scientific and societal advancement through research and						
PEO 3	entrepreneurship.						

GRADUATE ATTRIBUTES

S No.	Attribute	Description						
1	Scholarship of Knowledge	Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of						
		the same for enhancement of knowledge.						
2	Critical Thinking	Critical ThinkingAnalyse complex engineering problems critically, applied independent judgement for synthesising information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.						
3	Problem Solving	Think laterally and originally, conceptualise and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.						
4	Research Skill	Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyse and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.						
5	Usage of modern Create, select, learn and apply appropriate techni tools prediction and modern engineering and IT tools, inclusion with an understanding of the limitations.							

		Possess knowledge and understanding of group dynamics,					
		recognise opportunities and contribute positively to					
	Collaborative and	collaborative-multidisciplinary scientific research,					
6	Multidisciplinary	demonstrate a capacity for self-management and teamwork,					
	work	decision-making based on open-mindedness, objectivity and					
		rational analysis in order to achieve common goals and					
		further the learning of themselves as well as others.					
		Demonstrate knowledge and understanding of engineering					
		and management principles and apply the same to one's own					
-	Project Management	work, as a member and leader in a team, manage projects					
	and Finance	efficiently in respective disciplines and multidisciplinary					
		environments after consideration of economic and financial					
		factors.					
		Communicate with the engineering community, and with					
		society at large, regarding complex engineering activities					
		confidently and effectively, such as, being able to					
8	Communication	comprehend and write effective reports and design					
		documentation by adhering to appropriate standards, make					
		effective presentations, and give and receive clear					
		instructions.					
		Recognise the need for, and have the preparation and ability					
q	Life-long Learning	to engage in life-long learning independently, with a high level					
		of enthusiasm and commitment to improve knowledge and					
		competence continuously.					
		Acquire professional and intellectual integrity, professional					
		code of conduct, ethics of research and scholarship,					
10	Ethical Practices and	consideration of the impact of research outcomes on					
	Social Responsibility	professional practices and an understanding of responsibility					
		to contribute to the community for sustainable development					
		of society.					

11	Indonondont and	Observe and examine critically the outcomes of one's actions
		and make corrective measures subsequently, and learn from
	Reflective Learning	mistakes without depending on external feedback.

QUALIFICATIONS DESCRIPTORS

1. Demonstrate

- (i) A systematic, extensive, coherent knowledge and understanding of an academic field of study as a whole and its applications, links to related disciplinary areas/subjects of study; including a critical understanding of the established theories, principles and concepts, and of a number of advanced and emerging issues in the field of Embedded System;
- (ii) Procedural knowledge that creates different types of professionals related to the Embedded System domain, including research and development, teaching, government and public service;
- (iii) Professional skills in the domain of microcontrollers, real time operating systems, device drivers, embedded system design, embedded systems, data structures, digital signal processing, internet of things, multicore programming optimization including a critical understanding of the latest developments, and an ability to use established techniques in the domain of digital media.
- Demonstrate comprehensive knowledge about microcontrollers, interfacing I/O devices, sensors, actuators, communication devices, protocols, relating to essential and advanced learning areas pertaining to the embedded systems, techniques and skills required for identifying problems and issues related.
- 3. Demonstrate skills in identifying information needs, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources, analysis and interpretation of data.
- Methodologies as appropriate to the subject(s) for formulating evidence based solutions and arguments.
- 5. Use knowledge, understanding and skills for critical assessment of a wide range of ideas and complex problems and issues relating to the chosen field of study.

- Communicate the results of studies undertaken in an academic field accurately in a range of different contexts using the main concepts, constructs and techniques of the Embedded system.
- 7. Address one's own learning needs relating to current and emerging areas of study, making use of research, development and professional materials as appropriate, including those related to new frontiers of knowledge.
- Apply one's disciplinary knowledge and transferable skills to new/unfamiliar contexts and to identify and analyse problems and issues and seek solutions to real-life problems.

PROGRAM OUTCOMES

After successful completion of Master of Engineering - ME (Embedded Systems), Students

will be able to:

PO No	Attribute	Competency		
		Acquire in-depth knowledge of Embedded Systems domain,		
	Scholarship of	with an ability to discriminate, evaluate, analyze, synthesize		
PO 1	Knowledge	the existing and new knowledge, and integration of the same		
		for enhancement of knowledge.		
		Analyze complex Embedded Systems Eco System critically,		
	Critical Thinking	apply independent judgement for synthesizing information to		
PO 2		make intellectual and/or creative advances for conducting		
		research in a wider theoretical, practical and policy context.		
		Think laterally and originally, conceptualize and solve		
		Embedded Systems problems, evaluate a wide range of		
	Ducklass Coluins	potential solutions for those problems and arrive at feasible,		
PO 3	Problem Solving	optimal solutions after considering public health and safety,		
		cultural, societal and environmental factors in the core areas		
		of expertise.		
		Extract information pertinent to unfamiliar problems through		
		literature survey and experiments, apply appropriate research		
		methodologies, techniques and tools, design, conduct		
		experiments, analyze and interpret data, demonstrate higher		
PO 4	Research Skill	order skill and view things in a broader perspective, contribute		
		individually/in group(s) to the development of		
		scientific/technological knowledge in one or more domains of		
		engineering.		
		Create, select, learn and apply appropriate techniques,		
	Usage of modern	resources, and modern engineering and IT tools, including		
PO 5	tools	prediction and modelling, to complex engineering activities		
		with an understanding of the limitations.		

		Possess knowledge and understanding of group dynamics,						
		recognize opportunities and contribute positively to						
	Collaborative and	collaborative-multidisciplinary scientific research,						
PO 6	Multidisciplinary	demonstrate a capacity for self-management and teamwork,						
	work	decision-making based on open-mindedness, objectivity and						
		rational analysis in order to achieve common goals and further						
		the learning of themselves as well as others.						
		Demonstrate knowledge and understanding of engineering						
	Project	and management principles and apply the same to one's own						
	Management and	work, as a member and leader in a team, manage projects						
PO 7	Financo	efficiently in respective disciplines and multidisciplinary						
	Finance	environments after consideration of economic and financial						
		factors						
		Communicate with the engineering community, and with						
		society at large, regarding complex engineering activities						
	Communication.	confidently and effectively, such as, being able to comprehend						
PO 8	Communication	and write effective reports and design documentation by						
		adhering to appropriate standards, make effective						
		presentations, and give and receive clear instructions.						
		Recognize the need for and have the preparation and ability to						
	Life long Learning	engage in life-long learning independently, with a high level of						
PO 9		enthusiasm and commitment to improve knowledge and						
		competence continuously.						
		Acquire professional and intellectual integrity, professional						
	Ethical Practicos	code of conduct, ethics of research and scholarship,						
	etilical Fractices	consideration of the impact of research outcomes on						
PO 10	and Social	professional practices and an understanding of responsibility						
	κεεροηεισιιτγ	to contribute to the community for sustainable development						
		of society.						

	Independent and	Observe and examine critically the outcomes of one's actions
PO 11	Reflective	and make corrective measures subsequently and learn from
	Learning	mistakes without depending on external feedback.

COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS)

FIRST YEAR: ME (Embedded Systems)

Semester: 1

Semester: 2

Subject Code	Subject Title	L	т	Ρ	С	Subject Code	Subject Title	L	т	Ρ	С
CSE 601	Data Structures and Algorithms	3	-	-	3	ESD 603	Digital Signal Processing	3	-	-	3
CSE 602	Real Time Operating Systems	3	-	-	3	ESD 604	Device Drivers	3	-	-	3
ESD 601	Advanced Computer Architecture	3	-	-	3	ESD 605	Embedded Systems	3	-	-	3
ESD 602	Microcontrollers and its Applications	3	-	-	3	ESD 606	Embedded Software Design	3	-	-	3
	Elective - 1	3	-	-	3		Elective - 2	3	-	-	3
CSE 601L	Data Structures and Algorithms Lab	-	-	3	1	ESD 603L	Digital Signal Processing Lab	-	-	3	1
CSE 602L	Real Time Operating Systems Lab	-	-	3	1	ESD 604L	Device Drivers Lab	-	-	3	1
ESD 601L	Advanced Computer Architecture Lab	-	-	3	1	ESD 605L	Embedded Systems Lab	-	-	3	1
ESD 602L	Microcontrollers and its Applications Lab	-	-	3	1	ESD 606L	Embedded Software Design Lab	-	-	3	1
	Elective - 1 Lab	-	-	3	1		Elective - 2 Lab	-	-	3	1
ESD 695	Mini Project - 1	-	-	4	-	IOT 696	Mini Project -2	-	-	-	4
ESD 697	Seminar - 1	-	-	1	-	IOT 698	Seminar - 2	-	-	-	1
	Total	15	-	15	25		Total	15	-	15	25

SECOND YEAR (FINAL YEAR):

III and IV Semester				
IOT 799 Project Work 25				
Total Number of Credi	75			

List of Electives(Theory)

	Elective - 1		Elective - 2
Code	Subject	Code	Subject
CCE C10 Computer Networks			Mobile Application
C3E-010	computer Networks	C3E-005	Development using Android
	Database Programming in Java	CSE 611	Web Application
C3E-004	Database Programming in Java	C3E-011	Development
	Internet of Things	CSE-612	Multicore Program
101-007	internet of finings		Optimization
		CSE-631	IT Project Management
			Big Data and Data
		BDA-014	Visualization
		EDA-601	High Level Digital Design
		ENP-601	Entrepreneurship

List of Electives (Lab)

	Elective - 1		Elective - 2
Code	Subject	Code	Subject
CSE-610L	Computer Networks Lab	CSE-605L	Mobile Application Development using Android Lab
CSE-604L	Database Programming in Java Lab	CSE-611L	Web Application Development Lab
IOT-607L	Internet of Things Lab	CSE-612L	Multicore Program Optimization Lab
		CSE-631L	IT Project Management Lab
		BDA-614L	Big Data and Data Visualization Lab
		EDA-601L	High Level Digital Design Lab
		ENP-601L	Entrepreneurship Lab

Name of the Institution / Department: Manipal School of Information Sciences (MSIS)

Name of the	Program:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Data Structures and Algorithms				
Course Code: CSE 601		Course Instructor:				
Academic Year: 2020 - 2021		Semester: First Year, Semester 1				
No of Credits	: 3	Prerequisites: Basic Programming – preferably C				
Synopsis:	 This Course provid This course introduced design of algor Students learn time and space Students learn and sorting tect 	es insight on roduces students to elementary data structures and ithms. how to design optimal algorithms with respect to e how to implement link list, stack, queues, searching shniques, sets, trees and graphs.				
	4. Students learn	n the design of divide and conquer technique,				
Course Outcomes (COs):	On successful completion of this course, students will be able to					
CO 1:	Specify and analyse algorithms.					
CO 2:	Learn and design programs for implementation of linear and nonlinear data structure.					
CO 3:	Learn and design p	programs for sorting and searching.				
CO 4:	Illustrate applicat programming, gree	ion of divide and conquer technique, dynamic edy technique and back tracking.				

Mappi	ng of C	Os to P	Os								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*			*							
CO 2	*	*				*					
CO 3	*					*					
CO 4	*	*				*					

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction	
Algorithm Specification, Performance	At the end of the topic student should be
Analysis	able to:
	1. Define algorithms (C1)
	2. Analyse algorithms. (C6)
Unit 2: Algorithm Analysis Techniques	
Analysis of Recursive Programs, Solving	1. Define recursive programs (C2)
Recurrence Equations, General	2. Design simple recursive programs
Solution for a large class of	(C6)
Recurrences.	3. Solve recurrence relations (C6)
Unit 3: Elementary data structures	
Implementation of Lists. Stacks.	1. Design singly linked list (C6)
Queues	2. Design doubly linked list(C6)
	3. Explain the concepts of array-based
	stacks (C2)
	4. Explain the concepts of pointer-
	based stacks (C2)
	5. Design and implement Queues.
	(C6)
Unit 4: Sorting & Searching Techniques	5
Quick sort, Heap sort, Merge sort,	1. Develop algorithm for insertion
Binary search, linear search, Fibonacci search	sort, bubble sort and selection sort. (C6)
	2. Develop and analyse algorithm for
	quick sort (C6)
	3. Develop and analyse algorithm for
	heap sort (C6)
	4. Develop and analyse algorithm for
	merge sort (C6)
	5. Design and analyse algorithms for
	binary, linear and Fibonacci search
	(C6)
Unit 5: Operations on Sets	

Introduction to Sets, A Linked- List	1. Develop data structures for sets
implementation of Set, The Dictionary,	(C6)
The Hash Table Data Structure	2. Design a linked list-based
	implementation of sets (C6)
	3. Design a Dictionary (C6)
	4. Design Data structure for hash table
	(C6)
Unit 6: Trees	
Basic Terminology, Implementation of	1. Examine the concepts of trees.
Trees, Binary Trees, Binary Search Trees	(C3)
	Design and implement general trees (C6)
	 Design and implement binary trees (C6)
	4 Design and implement hinary
	search trees (C6)
Unit 7: Graphs	
Basic definitions. Representation of	1. Define graphs (c6)
Graphs, Minimum Cost Spanning Tree.	2. Design data structure for graphs
Single Source Shortest Paths,	(c6)
All-Pairs Shortest Path	3. Formulate an algorithm to solve
	minimum cost spanning
	tree(c6)
	4. Formulate an algorithm to solve
	Single source shortest path (c6)
	5. Formulate an algorithm to solve
	All- pair shortest path(c6)
Unit 8: Algorithm Design Techniques	
Divide-and-Conquer Algorithms,	1. Design of divide and conquer
Dynamic Programming, Greedy	algorithms (C6)
Algorithms, Backtracking	2. Solve max min, Strassen's
	matrix multiplication,
	multiplication of long integers
	problem. (C6)
	3. Design of dynamic
	programming techniques (C6)
	4. Solve matrix chain order
	problem (C6)
	5. Design of greedy algorithms(C6)

- 6. Solve Knap-sack, job scheduling with deadlines and optimal storage on tapes problems. (C6)
- 7. Design of Back tracking algorithms (C6)

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
Learning strategy	contact nours	time (Hrs)				
Lecture	30	60				
Seminar	-	-				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Clinic	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4			
Sessional Examination 1	*	*					
Sessional Examination 2		*	*	*			
Assignment/Presentation	*	*	*	*			

	End Semester Examination	*	*	*	*
--	--------------------------	---	---	---	---

Feedback Process	End-Semester Feedback
Reference Material	 "Introduction to Algorithms" Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. "Data Structures& Algorithms" Aho, Hopcroft and Ulmann "Data structures and algorithm analysis in C" Mark Allen Weiss "Computer Algorithms" : Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran

Name of the Pro	ogram:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Real Time Operating Systems				
Course Code: C	SE 601	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 1				
No of Credits:	3	Prerequisites: Basic Programming – preferably C				
Synopsis:	This Course provi	des insight on				
	1. This course in	troduces students to basics of operating systems and				
	real operating systems.					
	2. This course helps the student to understand the concepts of					
	process management, scheduling, synthetization and dead locks.					
	3. This course helps the students to learn thread-based programming.					
	4. Students lear	n the concept of memory management.				
	5. Students learn	n the salient features of real time operating systems				
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Examine the evolution of operating systems and real time operating					
	systems.					
CO 2:	Design programs based on threads.					
CO 3:	Explain the conc	epts involved in process management, scheduling,				
	synthetization of	processes.				
CO 4:	Explain the conc	epts involved in memory management, detecting,				
	avoiding and reco	over from dead locks.				
CO 5:	Explain the conce	epts of real time systems and real time operating				
	systems					

Марр	ing of (COs to	POs								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2	*	*	*								
CO 3	*		*								
CO 4	*		*								
CO 5		*	*	*							

Course content and outcomes:

Content	Competencies
Unit 1: Introduction to OS and RTOS	
Essential features of an OS, Single Processor Systems and Multiprocessor Systems, Essential Features of Batch Processing, Time sharing, Multiprogramming, Interactive systems, User mode and Kernel Mode operations, Distinction between function call and system call, Real time operating system and real time embedded systems.	 At the end of the topic student should be able to: 1. Identify the features of OS and RTOS (C2) 2. Distinguish between single processor and multi-processor systems (C2) 3. Identify the features of batch processing, time sharing, multi programming and interactive systems (C2) 4. Distinguish between user and kernel modes (C2) 5. Distinguish between function and system calls (C2)
Unit 2: Process Management	
A process in memory, process state, PCB, Process scheduling, scheduling Queues, Types of schedulers, Process system calls - IPC using Shared Memory, IPC using Sockets.	 Describe a process, process state, process control block (C2) Illustrate scheduling algorithms, scheduling queues (C3) Examine process related system calls (C1) Illustrate methods for inter process communication through share memory and sockets (C3)
Unit 3: Multithreaded Programming	
Introduction, benefits, multithreading models, Pthreads, Win32 threads, Threading Issues, Thread pools Linux threads.	 Summarize the benefits of multi- threading (C2) Discover threading issues (C2) Illustrate programs using p threads (C3) Examine the benefits of thread pools (C3)
Unit 4: Process Scheduling	
Introduction, scheduling criteria, scheduling Algorithms – FCFS, SJF, PS, RR, Multilevel Queues, Multilevel	 Distinguish between scheduling algorithms (C2) Examine the criteria for scheduling (C3)

feedback Queue Scheduling,	3.	Explain FCFS, SJF, PS, RR, Multi-level
Scheduling evaluations.		queues, multi-level feedback queues
		scheduling algorithms (C2)
	4.	Evaluate the scheduling algorithms (C5)
Unit 5: Synchronization	1	
Introduction, Critical Section Problem,	1.	Define critical section problem (C1)
Petersons Solutions, synchronization	2.	Demonstrate Software solutions to
hardware, Semaphores, usage,		critical section problems (C3)
implementations; Deadlocks and	3.	Demonstrate hardware solution for
starvation, Classical problem of		process synchronization (C3)
synchronization – Bounded Buffer	4.	Describe the usage and implementation
problem, Reader's Writer's problem,		of semaphores (C1)
Dining Philosophers problem, sleeping	5.	Define dead locks and starvation (C1)
barber's problem; Monitors.	6.	Illustrate solutions to classical
		synchronization problems like bounded
		buffer, readers writers, dining
		philosophers and sleeping barbers (C3)
Unit 6: Deadlocks		
Introduction, deadlock,	1.	Define dead locks (C2)
characterization, methods for handling	2.	Examine methods for handling dead
deadlocks, deadlock prevention,		locks (C4)
deadlock avoidance, recovery from	3.	Illustrate various dead lock algorithms
deadlock.		(C3)
Unit 7: Memory Management		
Memory Management Strategies,		1. Examine various memory
Virtual Memory Management.		management strategies(C4)
		2. Examine the evolution of memory
		management (C4)
		3. Illustrate the benefits of paging and
		segmentation(C3)
		4. Examine the implementation of
		demand paging(C4)
		5. Examine the various virtual memory
		concepts (C4)
Unit 8: Real Time Systems		
Overview of Real Time Systems, Real	1.	Examine the concepts involved in the
Time clocks and Real Time Scheduling		design of real time systems (C3)
Algorithms	2.	Design of real time clocks in various real
		time languages(C5)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning			
		time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
	Viva		

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2			*	*			
Assignment/Presentation				*	*		
End Semester Examination	*	*	*	*	*		

Feedback Process	•	End-Semester Feedback
Reference Material		"Operating System principles", Seventh Edition, Abraham
		Silberschatz, Peter Galvvin, Grag Gagne. John Wiley
		Publications
		• "Real – Time Systems and Programming Languages", Allan
		Burns, Andy Wellings.
		 "Operating Stems Concepts and Design", Milan
		Milenkovic
		 "Design of Unix Operating System", Maurice Bach (IPC)
		 "The C Programming Language", Kerninghan & Ritchie

Name of the	Program:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Advanced Computer Architecture				
Course Code:	ESD 601	Course Instructor:				
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 1				
No of Credits	: 3	Prerequisites: Basic Programming – preferably C,				
		digital systems				
Synopsis:	This Course provides	insight on				
	1. Basics difference	between computer architecture and organisation,				
	recoise buses, def	fining the architecture				
	2. Able to understan	d various architectural instruction sets, defining the				
	registers, deign	ALU, adders, multipliers, booths algorithms and				
	division algorithm	is, arm processors				
	3. Designing of instruction sets, design of control units					
	6. Students able to develop the execution unit based on applications					
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
	Distinguish hetween	computer architecture and organisation buses				
CO 1:	memory various types of instruction execution					
	Analyse register ALL	design, booths & division algorithms, the problem				
CO 2:	definition. complete	design and development of application on ARM				
CO 3:	Justify the processing	section of control unit and PLA				

Mapping of COs to POs														
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	7	PO 8	PO	9	PO 1	0	PO 11
CO 1	*	*												
CO 2		*	*											
CO 3				*	*									

Course content and outcomes:				
Content Competencies				
Unit 1: Introduction				
Computer Architecture Vs Organization	At the end of the topic student should be able			
– Classification -Von Neumann vs	to:			

Harvard Architecture – Computer	1. List the difference between computer
Architecture Vs Embedded	architecture and organisation(C1)
Architecture - System on Chip vs	2. Describe data bus, control bus, address
System on Board – CPU – Address Bus –	bus w.r.t. to technical aspects(C2)
Data Bus – Control Bus –RAM – ROM –	3. Distinguish between RAM and ROM (C2)
Instruction Set Architecture -	4. Distinguish between RISC and CISC (C2)
Classifications – RISC vs CISC vs VLIW.	5. Describe the programming model of
	ARM (C2)

Unit 2: Introduction to ARM Processor

Architecture - Components -	1.	Write asm program to display "HELLO
Instruction level registers and Purpose-		WORLD" using ARM instructions(C5)
Special Function Registers Vs General	2.	Design a 4bit GPR for following actions: load
Purpose Registers - Register Design -		external data, rotate left, rotate right,
ALU– ALU design – Adder –		increment. (C5)
Types of Adders – Logical Block Design	3.	Compute and Analyse booths algorithm for
– Multiplier – Multiplier Design - Barrel		two four bit numbers 4x-6 (C4)
Shifter – Design of Barrel	4.	Explain the restore algorithm by taking an
Shifter – Sequential Multiplication		example 11 by 3 (C5)
Algorithm - Booths Algorithm – Division	5.	In a computer instruction format the
Algorithm (Restoring and Non-		instruction length and size of the address
Restoring).		filed are 11 and 4 bits. Architecture already
		had 6 two address and 24 zero address
		instruction. What is the maximum number
		of 1 address instruction that can be added to
		instruction set. Justify your answer (C6)

Unit 3: Instruction Set Architecture

ARM & Thumb Instructions –	1.	Explain thumb instruction programming
Addressing Modes – Types of		model in ARM7 (C2)
Instructions –	2.	Define huffmans encoding technique with
Endianness – Assembly Programming -		adequate example(C3)
Instruction Designing- Huffman	3.	Considering the relative frequency's for set
Encoding technique for designing		of instructions, by encoding them using
instruction sets – Control Unit –		huffman's method, calculate the
Hardwired and Microprogrammed		redundancy(C5)
Approach - Firmware –Coprocessor –	4.	Design a Booths multiplier to multiply 4
Floating Point Number – FPU		bit 2's compliment numbers using D Flip-
		flops and PLA for booths multiplier (C6)

Unit 4: Memory

Types of Memory – Memory Hierarchy	1.	Define the characteristic of memory's
- Static – Dynamic RAM – ROM & ROM		(C2)
Types – Cache	2.	Write the block diagram of 1Kx8 RAM
Memories –Performance		using two 1Kx4 chips (C5)
Considerations - Virtual Memories -	3.	Explain synchronous and asynchronous
MMU & MPU - Secondary Storage		bus with timing diagram. (C4)
Unit 5: Introduction to Pipelining		
Advantage – Data Hazards – Instruction	1.	What is meant by hazards? Explain
Hazzards – Influence of Instructions		briefly(C4)
sets – Datapath and Control	2.	Describe how data hazard can be
Considerations		minimized by complier scheduling(C4)
	3.	List and explain 4 schemes which helps
		to reduce branch hazards(C5)
	5.	Explain how delayed branch can be
		scheduled (C5)
Unit 6: Introduction to Parallel Proces	sing	
Parallelism in Uniprocessor & Multicore		1. Describe the DLX instructions, their
Systems – Parallel Computer Structures		formats with help of example(C3)
- Architectural Classification Schemes		2. Explain flynn's classification of
- Applications - Principles and Vector		computers(C4)
Processing – Structures and Algorithms		3. Differentiate between shared
for Array Processors		memory versus distributed
		memory(C3)
		4. Differentiate between parallel
		computing versus serial computing
		(C3)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours Student learn				
		(Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			

Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
	Viva		

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2			*		*		
Assignment/Presentation		*	*		*		
End Semester Examination	*	*	*	*	*		

Feedback Process	End-Semester Feedback				
	1. CV Hamacher, Vranseic and Zaky, "Computer Organization",				
	Filth Edition, Tata-MacgrawHill				
	2. Rafiquzzamann ,"Modern Computer				
	Architecture", Chandra, Galgotia Publications				
	3. John L Hennessy and David A Patterson ,"Computer				
	Architecture: A Quantitative approach", 2nd				
	Edition				
	4. John L Hennessy and David A Patterson ,"Principles of				
	Computer Architecture", Prentice Hall				
Reference Material	5. Shivarama Danadamudi, "Guide to RISC Processors for				
	Programmers & Engineers", Springer				
	Publications.				
	6. "ARM Architecture Reference Manual", David Seal ,Addison-				
	Wesley,2nd Edition				
	7. "AMBA Specification", ARM7TDMI Datasheet.				
	8. "Computer Organisation and Design", David A Patterson, John				
	L Hennessy				
	9. David Seal, "ARM Architecture Reference Manual", 2nd Edition,				
	Addison-Wesley Professional.				

10. Steve Furber,"ARM System-on-Chip Architecture",2nd Edition,
Addison-Wesley Professional,
ISBN-13: 078-5342675191,ISBN-10: 0201675196
11. William Hohl, Christopher Hinds,"ARM Assembly Language:
Fundamentals and Techniques",2nd
Edition, ISBN-13: 978-1482229851, ISBN-10: 1482229854
12. Andrew Sloss, Dominic Symes, Chris Wright,"ARM System
Developer's Guide: Designing and
Optimizing System Software",1st Edition,The Morgan Kaufmann
Series in Computer Architecture and Design, ISBN-13: 978-
1558608740, ISBN-10: 1558608745
1. 13. Websites & Transaction Papers

Name of the Pro	the Program: Master of Engineering - ME (Embedded System	
Course Title:	urse Title: Microcontrollers and its Applications	
Course Code:	ESD 602	Course Instructor:
Academic Year:	2020 - 2021	Semester: First Year, Semester 1
No of Credits:	3	Prerequisites:Microprocessor architecture ,Assembly language and Number systems
Synopsis:	 This Course provides This course pro Microcontrollers. This course provide Registers and Ins Programming. This course provide Sensors and Perip This course provide Sensors and Perip This course provide Using Microcontrol 	insight on vides the knowledge of Intel 8051 and ARM des the knowledge of Microcontroller architecture, truction sets to write Assembly and Embedded C ides the concept of Interfacing and Programming herals to Microcontrollers. des the concept of Designing Embedded Systems ollers.
Course Outcomes (COs):	On successful comple	tion of this course, students will be able to
CO 1:	Employ the knowledge of Microcontrollers to build Embedded systems.	
CO 2:	Explain the concept of Programming Microcontrollers using Assembly and Embedded C.	
CO 3:	Design Embedded Sys	stems by interfacing Sensors and Actuators.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*			*						
CO 3	*		*		*						

Course content and outcomes:			
Content	Competencies		
Unit 1: Introduction to Microprocessor	& Microcontrollers		

Comparison – Variants – Types – General	At the end of the topic student should be able to:		
 ASIC – PLD – Introduction to Motherboard(Desktop) - Introduction to Embedded Board – Compare and Contrast - Application Types – Single Tasking – Multitasking – Multi- Application 	 Explain about the differences of Microprocessor and Microcontrollers(C2) Describe Microcontroller Architecture (C2) Explain the Register sets, Programming model and Memory map of Microcontroller(C2) Describe about Microcontroller Instruction set. (C2) Write the Applications using Microcontrollers. (C3) 		
Unit 2: Introduction to ARM Microcontro	ollers		
Programming Model – Processor Modes – ARM vs Thumb Introduction to LPCxxxx Microcontrollers – Features – Detailing of Pins - Memory Map Concepts – RAM & ROM - Interrupts Concepts (Internal & External)	 Describe ARM Microcontroller architecture. (C2) Describe the architecture of ARM Microcontrollers. (C2) Apply knowledge of ARM Microcontroller architecture to rig up Embedded system circuits(C3) Develop a Prototype of Embedded systems using ARM Microcontroller(C5, P3) 		
Unit 3: Reset Circuitry			
Crystals - Introduction to GPIO – Registers – Input /Output Configuration – Pull Up and Pull Down Resistor Concept – Interfacing with LED – Interfacing Push Buttons – LCD – Stepper Motor – DC Motor	 Describe Crystal oscillator. (C2) Describe Pull Up and Pull Down Resistor Concept. (C2) Illustrate Interfacing LED, Push Buttons, LCD, Stepper Motor – DC Motor with microcontroller. (C2) 		
Unit 4: Relays			
Types of Relays – Interfacing	Describe Relay and its with interfacing external		
	peripherals to Microcontrollers. (C4)		
Unit 5: Timer, Counter Introduction			

Configuration – Programming	 Describe about timers, counters and its usage with Microcontrollers(C4) 			
Unit 6: Serial vs Parallel Bus				
Serial vs Parallel Bus - Compare and Contrast – Terminology: Baud Rate – Bit Rate – RS232 – DB9 handshaking concepts - Configuring Registers – Programming for UART modules.	 Describe about Serial and Parallel communication protocols(C2) 			
Unit 7: Introduction to SPI and I2C Prot	ocol			
Detailed Discussion – Bit Banging – Interfacing with SPI and I2C Devices – RTC / ADC /DAC.	 Describe SPI, I2C standards and its Interfacing with SPI and I2C Devices – RTC / ADC /DAC. (C3) Explain about how to establish multi controller communications using communication protocols (C3) 			
Unit 8: Introduction to ADC and DAC				
Types – Chips - Register Configuration – Interfacing	1. Summarize types of ADC, DAC and its usage with Microcontroller. (C2)			

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
Learning strategy	contact nours	time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	
	Viva	

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*		
Sessional Examination 2		*	*	
Assignment/Presentation	*		*	
End Semester Examination	*	*	*	

Feedback Process	•	End-Semester Feedback
Reference Material	1. 2.	William Hohl, Christopher Hinds,"ARM Assembly Language: Fundamentals and Techniques",2nd Edition, ISBN-13: 978- 1482229851, ISBN-10: 1482229854 Andrew Sloss, Dominic Symes, Chris Wright,"ARM System Developer's Guide: Designing and Optimizing System Software",1st Edition,The Morgan Kaufmann Series in Computer Architecture and Design, ISBN-13: 978-1558608740, ISBN-10: 1558608745
	3.	David Seal, "ARM Architecture Reference Manual", 2nd Edition, Addison-Wesley Professional.
	4.	Steve Furber,"ARM System-on-Chip Architecture",2nd
	5.	Edition,Addison-Wesley Professional, ISBN-13: 078- 5342675191,ISBN-10: 0201675196 Douglas V. Hall,"Microprocessors and Interfacing",Mcgraw Hill
		Educatin ,ISBN-10 1259006158,ISBN-13 9781259006159,2012.
	6.	Websites & Transaction Papers

Name of the	Program:	Master of Engineering - ME (Embedded Systems)	
Course Title:		Computer Networks	
Course Code	: CSE 610	Course Instructor:	
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 1	
No of Crodite	. 2	Prerequisites: Basic of Computer Communication and	
No or creatts		Networks	
	This Course provides	insight on	
	1. The concepts, app	plications, reference models of computer networks.	
Synoncic	2. The functional kr	nowledge about communication devices, IP addresses	
Synopsis.	and routing algori	thms for networking.	
	3. The implementat	ion of routing, congestion, transport, multitasking and	
	application layer	protocols for the wired using simulation and analysis.	
Course	Course		
Outcomes	On successful comple	tion of this course, students will be able to	
(COs):	(COs):		
CO 1:	Identify the goals and	l applications of computer networks, able to explain the	
CO 1.	classification of networks and reference models.		
CO 2:	Describe the functions of communication devices , IP addressing techniques.		
CO 3: Demonstrate routing algorithms, congestion control mechanisms a			
	transport layer protocols.		
CO 4:	Examine application, multicasting and management protocols functions.		

Mappi	ng of C	Os to P	Os								
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4			*								

Course content and outcomes:	
Content	Competencies
Unit 1: Computer Networks	
Definition, Network goals, Classification of networks, ISO – OSI and TCP/IP reference	At the end of the topic student should be able to:
model	 Define Computer Networks (C1). Describe any four applications of computer networks (C2).

	3.	Write the classifications of computer
		networks (C3).
	4.	Explain the basic network topologies with
		suitable failure scenarios (C2).
	5.	Describe the responsibilities of each layer
		in a reference model (C2).
Unit 2: Communication Devices	1	
Network Interface card, modem, hub,	1.	Describe various network devices
switch, repeater, bridge, router and		operating across various layers of TCP.IP
gateway.		Stack. (C2)
Unit 3: Internet addresses	1	
Classes of IP addresses, Subnetting and	1.	Describe on various routing and
Supernetting TCP/IP networks, Internet		communication techniques with suitable
routing, host name resolution, Mapping IP		diagram (C2).
addresses to physical addresses, ARP and	2.	Design different classes of networks with
RARP		address ranges (C5).
	3.	Write the purpose of various protocols at
		Internet layer (C3)
	4.	Design of subnetworks and super networks
		(C5).
Unit 4: Routing Algorithms		
Shortest path, Flow based, Distance	1.	Explain the roles of various routing
vector, Link state, Hierarchical		algorithm in finding shortest routes (C5)
	2.	Modify the routing table of a router in the
		given subnet (C3)
	3.	Show how hierarchical routing reduce the
		routing table contents (C3)
Unit 5: Congestion control algorithms		
Congestion – causes, Congestion	1.	Describe various congestion prevention
Prevention Techniques, Congestion		and reactive techniques used in the
Reactive Techniques		routers and hosts (C2)
	2.	Write the various causes of congestion in a
		network (C3)
Unit 6: Internet Transport protocols (TCF	P & UDP)
Connection establishment and	1.	Write the roles of different port numbers
termination, Flow Control, Time out and		used for communication purposes (C2)
retransmission process	2.	Explain the operations of various protocols
		at transport layer (C2).

	3. Describe flow control and congestion
	control mechanisms acting at transport
	layer. (C4).
Unit 7: Application Protocols	
SMTP, DHCP, DNS, FTP	 Describe the roles of various protocols at application layer (C2)
	 Compare the connection establishment, information transfer and connection termination phases of different application layer protocols (C4).
	 Show the configuration, implementation and usage of various the application layer protocols. (C3).
Unit 8: Multicasting and other Protocols	
Multicasting, IPV6, IGMP, ICMP, VOIP	1. Explain multicasting protocol. (C2)
	2. Write the functions of IP in voice communication (C3)
	 Demonstrate various network management protocol. (C3)

Learning strategies, contact hours and student learning time			
Learning strategy	Contact hours Student learnin		
		time (Hrs)	
Lecture	30	60	
Quiz	02	04	
Small Group Discussion (SGD)	02	02	
Self-directed learning (SDL)	-	04	
Problem Based Learning (PBL)	02	04	
Case Based Learning (CBL)	-	-	
Revision	02	-	
Assessment	06	-	
TOTAL	44	74	

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	
	Viva	

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO5
Sessional Examination 1	*	*	*		*
Sessional Examination 2		*	*	*	*
Assignment/Presentation			*	*	*
End Semester Examination	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 "Internetworking with TCP/IP Vol I : Principles, Protocols and Architecture", Douglas E Comer, III Ed. PHI, 1997. "Microsoft TCP/IP on Windows NT 4.0", MCSE. "Internetworking with TCP/IP Client–Server Programming and applications, BSD Socket version", Douglas E Comer and David L Stevens, Vol. III. "TCP/IP Illustrated, Volume I, The Protocols", W Richard Stevens, International Student Edition, 1999. "Advanced Internet Technologies", Uyless Black, PHI "High Performance Communication Networks", Jean Warland & Praveen Varaiya – Morgan Kaufmann

Name of the	Program:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Database Programming in Java				
Course Code:	CSE 604	Course Instructor:				
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 1				
No of Credits	: 3	Prerequisites: Basic programming knowledge				
Synopsis:	1. To provide f	undamental knowledge of various object oriented				
	programming concepts and database concepts.					
	2. To design and develop database applications using java					
	programming	language.				
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Explain major principles of object oriented programming concepts					
CO 2:	Discuss the different elements of java programming language					
CO 3:	Design databases using the conceptual model					
CO 4:	Develop a java applic	ation for various database requirements				

Mapping of COs to POs											
Cos	PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	<i>PO</i> 8	<i>PO</i> 9	PO 10	PO 11
CO 1	*	*									
CO 2	*	*	*		*						
CO 3		*		*							
CO 4			*		*						

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction	
Object Orientation (OO) Concepts	 At the end of the topic student should be able to: 1. Illustrate with an example the major principles such as classes, objects, encapsulation, inheritance, polymorphism (C2) 2. Distinguish between procedure oriented programming and object oriented programming (C2)
Unit 2: Introduction to Java	
Data types, Operators, Control	1. Discuss features of java programming
Statements.	language (C2)

	2. Discuss the term platform independence
	specific to java programming language
	(C2)
	3. Explain various data types, operators and
	control statements (C2)
Unit 3: Classes in java	
Class fundamentals, Constructs,	1. Define class structure in java
Garbage collection, Inner Classes	programming language (C1)
	2. Discuss various components of class
	structure which includes concepts
	constructors, variables, methods using
	java (C2)
	3. Explain the mechanism garbage collection
	(C2)
	4. Illustrate the use of inner classes (C2)
Unit 4: Inheritance	
Introduction to Java Inheritance,	1. Define different types of inheritance (C1)
Multilevel inheritance, Abstract, final	2. Explain abstract classes (C2)
classes	3. Discuss final classes (C2)
	4. Apply abstract classes and final classes in
	applications (C3)
Unit 5: Packages, Interfaces	
Package, access control, Interfaces.	 Illustrate the use of packages in an application (C2)
	2. List various access control mechanism (C1)
	3. Define java interfaces (C1)
	4. Apply interfaces in applications. (C3)
Unit 6: I/O API's	
Reader, Writer APIs, File Management	1. List the types of steam classes available
	(C1)
	2. Write java program to read data from
	different types of files (C3)
	3. Discuss file management in java (C2)
Unit 7: Exception Handling	
Using exception handling, Creating user	1. Discuss the types of exception handle (C2)
defined exceptions.	2. Explain user define exception class (C2)
Unit 8: Java Applets, Applications	-
Java Applets, life cycle, methods, java	1. Define java applets (C1)
Application	2. Discuss life cycle of java applets (C2)

	3.	Distinguish between java applets and java
		applications (C2)
Unit 9: Introduction to Swing		
Swing components, Event handling,	1.	Distinguish between AWT components
layout managers		and swing components (C2)
	2.	Define features of swing components (C1)
	3.	Apply different swing components, layout
		managers in java applications (C3)
	4.	Discuss event delegation model (C2)
Unit 10: Introduction to Database conc	epts	
Primary goal of RDBMS, Purpose of	1.	Define Relational database management
Database System, Characteristics of the		(C1)
Database Approach, Actors on the	2.	Discuss the purpose of database system
Scene, Workers behind the scene,		(C2)
Advantages of Using a DBMS, Views of	3.	Explain characteristics of the database
Data		approach (C2)
	4.	List actors on the scene and workers
		behind the scene (C1)
	5.	Discuss advantages of using DBMS (C2)
Unit 10: SQL		
Basic Structure, Set Operations,	1.	Explain basic structure of SQL statement
Aggregate Functions, Null Values,		(C2)
Nested Subqueries, Derived Relations,	2.	Discuss set operations (C2)
Views, Modification of the Database,	3.	Explain different types of aggregate
Joined Relations, Data-Definition		functions (C2)
Language	4.	Explain Views, nested queries, joined
		relations (C2)
	5.	Discuss data definition language (C2)
Unit 10: Introduction to JDBC		
JDBC Architecture, Connecting to an	1.	Explain JDBC architecture (C2)
ODBC Data Source, JDBC Connection,	2.	Explain JDBC connection and its
JDBC Implementation, Resultset		implementation (C2)
Processing, Prepared statement, Other	3.	Explain different types of jdbc classes
JDBC Classes, Moving the cursor in		which are required for database
scrollable Result Sets, Making updates		applications (C2)
to Updatable Result Sets.		

Learning strategies, contact hours and student learning time

Learning strategy	Contact hours	Student learning time (Hrs)
Lecture	30	60
Quiz	02	04
Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
	Viva			

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4			
Sessional Examination 1	*	*					
Sessional Examination 2			*	*			
Assignment/Presentation	*	*	*	*			
End Semester Examination	*	*	*	*			

Feedback Process	End-Semester Feedback
Reference Material	• Patrick Naughton and Herbert Schildt - "JAVA 2 - The Complete Reference" VII Edition, Tata McGraw Hill.
	 George Reese - "Database Programming with JDBC and Java", O'Reilly "Database system Concepts, Third Edition", Author:
	Abraham Silberschatz (Bell Laboratories), Henry F. Korth(Bell Laboratories) and S. Sudarshan (Indian Institute of Technology Bombay Publishers:
	The McGraw-Hill Companies, Inc.
	• "Fundamentals of Database systems, Third Edition". Author: Elmasri and Navath

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)			
Course Title:	I	Internet of Things			
Course Code:	IOT 607 (Course Instructor:			
Academic Year:	2020 - 2021	Semester: First Year, Semester 1			
No of Credits:	, I	Prerequisites: Computer Networks, Programming			
No of credits.	ā	aspects.			
Synopsis:	This Course provides in	isight on			
	1. Various eler	ments involved in the development of application			
	for IoT.				
	2. Understandi	ing of protocols across IoT stack			
	3. Scripting lan	nguages like shell and python.			
	4. Client Serv	ver architecture and Python APIs of Socket			
	programmin	ng.			
	5. Database a	nd Python Database connectivity, Python Web			
	Programmin	ng, IoT Framework			
Course					
Outcomes	On successful completion	on of this course, students will be able to			
(COs):					
CO 1:	Describe the developmental aspects of the application in IoT.				
CO 2:	Demonstrate the usage of networking protocols across IoT stack.				
CO 3:	Demonstrate the funda	amental concepts in Client Server architecture and			
	database implementation and usage with Python API's.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*			*						
CO 3	*		*		*						

Course content and outcomes:	
Content	Competencies
Unit 1: Internet of Things	
IoT Protocols – Logical Design - Enabling	At the end of the topic student should be able to:
Technologies - Levels – IoT vs M2M –	1. Outline the integration of various
Design Methodology – Domain Specific	elements of IoT ecosystem. (C2)
Applications	
Unit 2: Introduction to Python	

Datatypes - Constructs – Packages	1.	Employ Datatypes, Constructs, Packages
		in python programming. (C2)
Unit 3: Wireless Sensor Networks		
Protocol Standards – Issues – Routing –	1.	Describe Protocol Standards, Routing,
Applications		Issues in Wireless Sensor Networks. (C2)
Unit 4: Bluetooth		
Introduction – Protocol Stack - RF Classes	1.	Explain the aspects of Bluetooth
– Radio Technologies – Service Discovery		technology. (C2)
– Device Discovery – Profiles – Security		
(Discovering Bluetooth) - Hardware		
Unit 5: Zigbee		
- Frequency - Channels – Topology -	1.	Describe Protocol Standards, Routing,
Zigbee Protocol Stack - PHY - MAC Layer		Issues in Zigbee. (C2)
- Working – Frame Structure – Beacon –		
Non-Beacon Communication - Zigbee		
PDU – Zigbee Hardware – API Mode and		
AT mode communication.		
Unit 6: Internet Protocol		
Introduction to IPv4 and IPv6 – IPv4	1.	Demonstrate the implementation of IPv4
Headers – Ipv6 Headers		and IPv6 protocol in TCP/IP protocol stack.
		(C3)
Unit 7: 6LoWPAN - 6LoWPAN arch	itecture	
simple, extended and ad-hoc networks.	1.	Indicate the 6LoWPAN architecture for
Issues in determining IPv6 links in LLNs		resource constrained devices. (C2)
and illustration of the undetermined link		
addressing model. IPv6 addressing in		
6LoWPAN.		
Unit 8: Sockets		
Introduction to Sockets – Client Server	1.	Outline Client Server Architecture. (C1)
Architecture –Unix Sockets – PORTS –		
Python APIs of Sockets – TCP socket		
programming using Python – UDP – RAW		
packets python programming.		
Unit 9: Databases & Web Programming		
Introduction to Databases – File System		1. Illustrate the socket communication
vs RDBMS – ER Diagram – Python		using python API's for RWA, stream
Database connectivity (CRUD) - Web		and datagram-oriented use cases. (C3)
Server Concepts - Python Web		
Programming – IoT Framework.		

Learning strategies, contact hours and student learning time				
Lograing strategy	Contact hours	Student learning		
Leanning strategy	Contact nours	time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
	Viva		

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3		
Sessional Examination 1	*	*			
Sessional Examination 2		*	*		
Assignment/Presentation		*	*		
End Semester Examination	*	*	*		

Feedback Process	End-Semester Feedback
	 Arshdeep Bhaga, Vijay Madishetti, "Internet of things:A hands on Approach", Universities Press, ISBN:978172719547 Robert Faludi, "Building Wireless Sensor Networks", Orielly, 2012
1. Reference Material	 Jean-Philippe Vasseur,Adam Dunkels,"Interconnecting Smart Objects with IP: The Next Internet",Morgan Kaufmann Publishers,2010,ISBN:0123751659 9780123751652 Marco Schwartz,"Internet of Things with the Arduino Yun",Packt Publishing,2014

٠	Charalampos Doukas,"Building Internet of Things With the
	Arduino: Volume 1",CreateSpace Independent Publishing
	Platform,2012
•	Todor Cooklev , "Wireless communication standards", IEEE
	Press
•	Houda Labiod, Hossam Afifi, Costantino De Santis, "Wi-Fi,
	Bluetooth, Zigbee and WiMAX", Springer Publications
•	Madhushree Ganguli , "Getting started with Bluetooth",
	Premier Press, 2002, ISBN 1931841837, 9781931841832.

Name of the	ne of the Program: Master of Engineering - ME (Embedded System				
Course Title: Data Structures and		Data Structures and Algorithms Lab			
Course Code:	CSE 601L	Course Instructor:			
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 1			
No of Credits	: 1	Prerequisites: Basic Programming – preferably C			
Synopsis:	This Course provid	es insight on			
	1. This course	introduces students to elementary data structures			
	and design	of algorithms.			
	2. Students le	earn how to design optimal algorithms with respect			
	to time and	space			
	3. Students l	earn how to implement link list, stack, queues,			
	searching a	ng and sorting techniques, sets, trees and graphs.			
	4. Students le	dents learn the design of divide and conquer technique,			
	dynamic pr	rogramming, greedy technique and back tracking			
Course					
Outcomes	On successful com	pletion of this course, students will be able to			
(COs):					
CO 1:	Specify and analys	e algorithms			
CO 2 :	Learn and design programs for implementation of linear and non-				
	linear data structure.				
CO 3:	Learn and design programs for sorting and searching.				
CO 4:	Illustrate application of divide and conquer technique, dynamic				
	programming, greedy technique and back tracking.				
CO 5:	Learn to organise the code for scalability and maintainability.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*									
CO 2		*	*		*			*			
CO 3		*	*		*			*			
CO 4		*	*		*			*			
CO 5		*	*		*			*			

Course content and outcomes:			
Content	Competencies		
Unit 1: Elementary data structures			

Implementation of Lists, Stacks,	At the end of the topic student should be		
Queues	able to:		
	 Design and Implement singly linked list 		
	2. Design and Implement doubly linked		
	list		
	 Design and Implement array-based stack 		
	4. Design and Implement pointer-		
	based stack		
	5. Design and Implement array-based		
	queues.		
	6. Design and Implement pointer-		
	based queues.		
Unit 2: Sorting & Searching Techniques	5		
Quick sort, Heap sort, Merge sort,	1. Design and implement programs for		
Binary search, linear search, Fibonacci	insertion sort, bubble sort and		
search	selection sort.		
	Design and implement programs for quick sort		
	Design and implement programs for heap sort		
	 Design and implement programs for merge sort 		
	5. Design and implement programs for		
	binary, linear and Fibonacci search		
Unit 3: Trees			
Basic Terminology. Implementation of	1. Write a program to implement		
Trees, Binary Trees, Binary Search Trees	binary trees		
, -, -, -, -, -,	2. Write a program to implement		
	binary search trees		
	3. Tree traversal technique		
Unit 4: Graphs			
Basic definitions, Representation of	1. Write programs to represent a		
Graphs, Minimum Cost Spanning Tree,	graph using adjacency matrix and		
	adjacency list techniques		

Single Source Shortest Paths, All-Pairs	2. Write a program to implement		
Shortest Path	minimum cost spanning tree		
	3. Write a program to solve Single		
	source shortest path problem		
	4. Write a program to solve All- pair		
	shortest path problem		
Unit 5: Algorithm Design Techniques			
Divide-and-Conquer Algorithms,	1. Write a program to solve max min		
Dynamic Programming, Greedy	problem		
Algorithms, Backtracking	2. Write a program to solve Strassen's		
	matrix multiplication problem		
	3. Write a program to solve matrix		
	chain order problem		
	4. Write programs to solve knap-sack,		
	job scheduling with dead line and		
	optima storage on taps problems.		
	5. Write programs to solve n queens		
	and graph colouring problems		

Learning strategies, contact hours and student learning time					
Logrania stratogu	Contact hours	Student learning			
	contact nours	time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					

Viva

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*						
Sessional Examination 2		*	*	*				
Assignment/Presentation	*	*	*	*	*			
Laboratory Examination	*	*	*	*	*			

Feedback Process	End-Semester Feedback
	 "Introduction to Algorithms" Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. "Data Structures& Algorithms" Aho, Hopcroft and
Reference Material	Ulmann 3. "Data structures and algorithm analysis in C" Mark Aller Weiss
	 "Computer Algorithms" : Ellis Horowitz, SartajSahni SanguthevarRajasekaran

Name of the Pro	bgram: Master of Engineering - ME (Embedded Systems)						
Course Title:	Real Time Operating Systems Lab						
Course Code: C	SE 602L Course Instructor:						
Academic Year:	2020 - 2021Semester: First Year, Semester 1						
No of Credits:	1 Prerequisites: Knowledge on C programming,						
	Operating System concepts						
Synopsis:	This Course provides insight on						
	1. Basics of operating systems and real operating systems.						
	2. Understand the concepts of process management,						
	scheduling, synthetization and dead lock.						
	3. Learn thread-based programming.						
	4. Learn the concept of memory management.						
	5. Learn the salient features of real time operating systems						
Course							
Outcomes	On successful completion of this course, students will be able to						
(COs):							
CO 1:	Experiment process creation, process hierarchies and multi-thread						
00 1	concepts.						
CO 2:	Apply process-scheduling algorithms and process synchronization						
	concepts on various scenarios.						
CO 3:	Apply memory management techniques on various scenarios						

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*						
CO 2	*	*	*		*						
CO 3	*	*	*		*						

Course content and outcomes:									
Content	Competencies								
Unit 1:									
Basics of C programming: String	At the end of the topic student should be able								
manipulation, file handling.	to:								
	Practice basic C programming concepts (C3)								

Unit 2: Experiment process creation, process Process creation, fork, exec, wait, multi thread concepts. hierarchies and multi-thread concepts. (C4) Unit 3: Apply process-scheduling algorithms on various Process scheduling algorithms scenarios. (C3) Unit 4: Process synchronization concepts. Experiment process synchronization concepts (C4) Unit 5: Memory management techniques Apply memory management techniques on various scenarios (C3)

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning time (Hrs)					
Lecture	12	-					
Seminar	-	-					
Quiz	-	-					
Small Group Discussion (SGD)	-	-					
Self-directed learning (SDL)	-	-					
Problem Based Learning (PBL)	-	-					
Case Based Learning (CBL)	03	-					
Clinic	-	-					
Practical	24	-					
Revision	03	-					
Assessment	06	-					
TOTAL	48	-					

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*	*						
Assignment/Presentation			*					

Laboratory Examination	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 Text mining handbook: advanced approaches in analyzing unstructured data Feldman, Ronen and James Sanger, 9780521836579, CUP, 2008 Linked Lexical Knowledge Bases Iryna Gurevych, Judith Eckle-Kohler, Michael Matuschek,9781627059749, Morgan & Claypool, 2016 Introduction to information retrieval Manning, Christopher D. and Prabhakar Raghavan and Hinrich Schutze, 9780521865715, Cambridge University Press,2008 Text mining: classification, clustering and applications Srivastava, Ashok and Mehran Sahami (eds.)., 9781420059403, Chapman & Hall,2009 Weiss, S. M., Indurkhya, N., Zhang, T. (2010). Fundamentals of Predictive Text Mining. Springer: New York. ISBN: 978-1849962254 Pustejovsky, J. and Stubbs, A. (2012). Natural Language Annotation for Machine Learning. O'Reilly. Foundations and Trends in Information Retrieval, 2(1-2): 1–135. Available online at: http://www.cs.cornell.edu/home/llee/opinion-mining-sentiment-analysis-survey.html. Manning, C. D., Raghavan, P., and Schutze, H. (2008). Introduction to Information Retrieval, Chapters 6 and 13-18, Cambridge University Press. Available online at: http://nlp.stanford.edu/IR-book/ Articles: https://www.healthcatalyst.com

Name of the	Program:	Master of Engineering - ME (Embedded Systems)					
Course Title:		Advanced Computer Architecture Lab					
Course Code:	ESD 601L	Course Instructor:					
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 1					
No of Credits	: 1	Prerequisites: Basic Programming – preferably C,					
		digital systems					
Synopsis:	This Course provides	insight on					
	1. Studer	nts able to understand various software tools,					
	usages.						
	2. Able to understand difference between Behavioural and						
	structural coding						
	3. Students will understand for gate level implementation						
	4. Develo	pp the circuit model based on application					
Course							
Outcomes	On successful completion of this course, students will be able to						
(COs):							
CO 1:	students able to understand knowledge of usage of software's						
CO 2:	students able to cons	students able to construct the basic gates using various flatforms					
CO 3:	Construction of circui	t models based on application					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*									
CO 2			*								
CO 3			*	*	*						

Course content and outcomes:				
Content	Competencies			
Unit 1: Installation of Xilinx Design su	Jit			
Installation of Xilinx IDE, Project	At the end of the topic student should be able			
creation, building a project, running a	to:			
sample project	1. Design and Demonstration of simple			
	gate level project(C2)			
Unit 2: Introduction Digital Basics				
Development of various Boolean	1. Practicing construction of circuits using			
equations, , Boolean functions using K	combinational gates (C4)			

map using combinations circuits, design					
of MSI models.					
Unit 3: Introduction of sequential design Circuits					
Designing basic elements of FlipFlops, latches, development of various types of flipflops, development finite state machines of class A And B.	 Development of various types of flip flops(C4) Design of various counter circuits, up counter, down counters, universal counter circuits , melay machine, moore machines, s (C6) 				
Unit 4: Multipliers and ADDERS					
Design and development of various	1. Design and simulation of various bits of				
types of adders, multipliers, Rom based	adders circuits (signed and unsigned				
multipliers, shift registers	numbered)(C6)				
	2. Designing and simulation of Booths				
	multipliers of various inputs bits(C6)				

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time		
		(Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	
Lab Assignment & Viva	Viva	

(Deemed to be University under Section 3 of the UGC Act, 1956)

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1		*	*				
Sessional Examination 2				*	*		
Assignment/Presentation				*	*		
Laboratory examination		*	*	*	*		

Feedback Process	• En	End-Semester Feedback	
Feedback Process	 En 1. 2. 3. 4. 5. 6. 7. 	d-Semester Feedback Samir Palnitkar " Verilog HDL A Guide to Digiatl Design and synthesis" William H Gothamn Fundamentals of digital electronics 2 nd edition Donald E Thomas and Phillp R Mooray " The Verilog Hardware Deisgn Langauges. CV Hamacher, Vranseic and Zaky , "Computer Organization", Fifth Edition, Tata-MacgrawHill Rafiquzzamann , "Modern Computer Architecture", Chandra, Galgotia Publications John L Hennessy and David A Patterson , "Computer Architecture: A Quantitative approach", 2nd Edition John L Hennessy and David A Patterson , "Principles of	
		Computer Architecture", Prentice Hall	
	8.	Internet sources.	

Name of the	ame of the Program: Master of Engineering - ME (Embedded Syster			
Course Title:	Course Title: Microcontrollers and its Applications Lab			
Course Code:	ESD 602L	Course Instructor:		
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 1		
No of Crodits	• 1	Prerequisites: Microprocessor architecture ,		
NO OI CIEUIIS	• 1	Assembly language and Number systems		
Synopsis:	This Course provides	insight on		
	1. This course p	provides the knowledge of Intel 8051 and ARM		
	Microcontroll	ers.		
	2. This course	provides the knowledge of Microcontroller		
	architecture, I	Registers and Instruction sets to write Assembly and		
	Embedded C F	Programming.		
	3. This course pr	ovides the concept of Interfacing and Programming		
	Sensors and P	eripherals to Microcontrollers.		
	4. This course pr	ovides the concept of Designing Embedded Systems		
	using Microco	ng Microcontrollers.		
Course				
Outcomes	On successful comple	tion of this course, students will be able to		
(COs):				
CO 1:	Employ the knowledge of Microcontrollers to build Embedded systems.			
<u> </u>	Explain the concept of Programming Microcontrollers using Assembly and			
02.	Embedded C.			
CO 3:	Design Embedded Sys	stems by interfacing Sensors and Actuators.		

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*		*						
CO 2	*	*			*						
CO 3	*	*	*		*						

Course content and outcomes:				
Content	Competencies			
Unit 1: Introduction to Microprocessor & Microcontrollers				
Comparison – Variants – Types – General – ASIC – PLD – Introduction to	At the end of the topic student should be able to:			
Motherboard(Desktop) - Introduction to Embedded Board – Compare and Contrast - Application Types –	 List different IDE's to program Microcontrollers (C1) 			

Single Tasking – Multitasking – Multi-	2. Design a Environment with tools
Application	required to build Embedded systems
	using Microcontrollers (C3)
Unit 2: Introduction to ARM Microcont	trollers
Programming Model – Processor Modes – ARM vs Thumb Introduction to LPCxxxx Microcontrollers – Features – Detailing of Pins - Memory Map Concepts – RAM & ROM - Interrupts Concepts (Internal & External)	 Demonstrate ARM Processor architecture specification using LPC 2148 Microcontroller Board (C3) Demonstrate a peripherals of ARM Microcontroller using LPC 2148 Microcontroller Board (C3)
Unit 3: Reset Circuitry	
Crystals - Introduction to GPIO – Registers – Input /Output Configuration – Pull Up and Pull Down Resistor Concept – Interfacing with LED – Interfacing Push Buttons – LCD – Stepper Motor – DC Motor	 Design an Digital notice board using LPC 2148 Microcontroller board to understand Peripherals on board (C3) Design an Automated Fan / AC / Temperature control system using on chip sensors and peripherals of LPC 2148 Microcontroller board (C3)
Unit 4: Relays	
Types of Relays – Interfacing	 Demonstrate working of Relay by controlling High voltage devices like DC Motor interfacing to ARM Microcontroller (C4)
Unit 5: Timer, Counter Introduction	
Configuration – Programming	 Design a Digital clock using ARM Microcontroller using on chip Timer and Counter (C3)
Unit 6: Serial vs Parallel Bus	
Serial vs Parallel Bus - Compare and Contrast – Terminology: Baud Rate – Bit Rate – RS232 – DB9 handshaking concepts - Configuring Registers – Programming for UART modules.	1. Design a Master and Slave architecture using Microcontrollers and establish communication using on chip serial UART(c4)
Unit 7: Introduction to SPI and I2C Pro	otocol

Detailed Discussion – Bit Banging – Interfacing with SPI and I2C Devices – RTC / ADC /DAC.	 Design a Serial wired communication among multiple Microcontrollers and sensors using I2C (c4) Design a Serial wired communication among Microcontroller and multiple sensors in Master and Slave Architecture using SPI (c4)
Unit 8: Introduction to ADC and DAC	
Types – Chips - Register Configuration – Interfacing	1. Design a Data Acquisition system ARM Microcontroller (C4)

Learning strategies, contact hours and student learning time				
	Contact hours	Student learning		
	contact nours	time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3		
Sessional Examination 1	*	*			

Sessional Examination 2		*	*
Assignment/Presentation	*	*	
Laboratory Examination	*	*	*

Feedback Process	•	End-Semester Feedback			
	٠	William Hohl, Christopher Hinds,"ARM Assembly Language:			
		Fundamentals and Techniques", 2nd Edition, ISBN-13: 978-			
		1482229851, ISBN-10: 1482229854			
	٠	Andrew Sloss, Dominic Symes, Chris Wright,"ARM System			
		Developer's Guide: Designing and Optimizing System			
		Software",1st Edition,The Morgan Kaufmann Series in			
		Computer Architecture and Design, ISBN-13: 978-			
		1558608740, ISBN-10: 1558608745			
Reference Material	٠	David Seal, "ARM Architecture Reference Manual", 2nd			
		Edition, Addison-Wesley Professional.			
	٠	Steve Furber,"ARM System-on-Chip			
		Architecture",2nd Edition,Addison-Wesley Professional,			
		ISBN-13: 078-5342675191,ISBN-10: 0201675196			
	٠	Douglas V. Hall,"Microprocessors and			
		Interfacing", Mcgraw Hill Educatin ,ISBN-10			
		1259006158,ISBN-13 9781259006159,2012.			
	•	Websites & Transaction Papers			

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Computer Networks Lab				
Course Code:	CSE 610	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 1				
No of Craditor 1		Prerequisites: Basic of Computer Communication				
No of Credits:	L	and Networks				
Synopsis:	This Course provides	insight on				
	1. Practical le	earning of concepts, applications, reference models				
	of comput	er networks.				
	2. Functional	knowledge about communication devices, IP				
	addresses	and routing algorithms for networking.				
	3. Implemen	ntation of routing, congestion, transport,				
	multitaskir	multitasking and application layer protocols for analysis				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
CO 1:	Identify the tools for a	applications of computer networks.				
CO 2:	Describe the functi	ons of communication devices, IP addressing				
CO 2.	techniques.					
CO 3:	Demonstrate routing	algorithms, congestion control mechanisms and				
CO 3.	transport layer protocols.					
CO 4:	Examine application,	multicasting and management protocols functions.				

Mappi	ng of C	Os to P	Os								
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4			*								

Course content and outcomes:				
Content	Competencies			
Unit 1: Computer Networks				
Definition, Network goals,	At the end of the topic student should be able to:			
Classification of networks, ISO – OSI	1. List different tools available for network			
and TCP/IP reference model	implementation (C1).			
	2. Identify suitable network tools (C2)			
	3. Design different topologies of wired			
	network (C5).			

Unit 2: Communication Devices	
Network Interface card, modem, hub,	1. Construct networks using various
switch, repeater, bridge, router and	communication devices (C5)
gateway.	2. Analyse packet forwarding methods of
	communication devices (C4).
Unit 3: Internet addresses	
Classes of IP addresses, Subnetting	1. Construct networks using Subnetting and
and Supernetting TCP/IP networks,	Supernetting (C5)
Internet routing, host name	2. Analyse ARP and RARP packet formats (C4)
resolution, Mapping IP addresses to	
physical addresses, ARP and RARP	
Unit 4: Routing Algorithms	
Shortest path, Flow based, Distance	1. Design of a network using different routing
vector, Link state, Hierarchical	protocols (C5)
	2. Modify the routing table content of a
	router in a network (C3)
Unit 5: Congestion control algorithms	5
Congestion – causes, Congestion	1. Design of a network using various
Prevention Techniques, Congestion	congestion prevention and reactive
Reactive Techniques	techniques (C5)
Unit 6: Internet Transport protocols	(TCP & UDP)
Connection establishment and	1. Construct networks using different
termination, Flow Control, Time out	transport layer protocols (C5)
and retransmission process	2. Analyse flow control and congestion
	control at transport layer (C4).
Unit 7: Application Protocols	
SMTP, DHCP, DNS, FTP	1. Design of a network using different
	application layer protocols (C5)
Unit 8: Multicasting and other Proto	ocols
Multicasting, IPV6, IGMP, ICMP, VOIP	1. Demonstrate multicasting protocol. (C3)
	1. Construct networks for voice
	communication (C5)
	2. Demonstrate various network
	management protocol. (C3)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		

Lecture	12	-
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	03	-
Clinic	-	-
Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO5	
Sessional Examination 1	*	*		*	*	
Sessional Examination 2			*	*	*	
Assignment/Presentation			*	*	*	
Laboratory examination			*	*	*	

Feedback Process	End-Semester Feedback
	 "Internetworking with TCP/IP Vol I: Principles, Protocols and
	Architecture", Douglas E Comer, III Ed. PHI, 1997.
	 "Microsoft TCP/IP on Windows NT 4.0", MCSE.
	 "Internetworking with TCP/IP Client–Server Programming
	and applications, BSD Socket version", Douglas E Comer and
Reference Material	David L Stevens, Vol. III.
	 "TCP/IP Illustrated, Volume I, The Protocols", W Richard
	Stevens, International Student Edition, 1999.
	 "Advanced Internet Technologies", Uyless Black, PHI
	 "High Performance Communication Networks", Jean
	Warland & Praveen Varaiya – Morgan Kaufmann

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)					
Course Title:		Database Programming in Java Lab					
Course Code:	CSE 604L	Course Instructor:					
Academic Year:	2020 - 2021	Semester: First Year, Semester 1					
No of Credits: 1	L	Prerequisites: Basic Programming knowledge					
Synopsis:	This Course pr	ovides insight on					
	1. To	provide fundamental knowledge of various object oriented					
	pro	programming concepts and database concepts.					
	2. To	2. To design and develop database applications using java					
	pro	ogramming language					
Course							
Outcomes	On successful	completion of this course, students will be able to					
(COs):							
CO 1:	Apply object oriented programming concepts in a java application						
CO 2:	Practice various types of UI based applications						
CO 3:	Manipulate da	atabase using various SQL Commands					
CO 4:	Write java ap	plications for various database requirements					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*	*		*						
CO 2		*	*		*						
CO 3		*	*		*						
CO 4		*	*		*						

Course content and outcomes:							
Content	Competencies						
Unit 1: Installation of JDK tools							
Installation of JDK tools, setting	At the end of the topic student should be able to:						
environment variables for java	1. Use of JDK tools for java application (C3)						
application, writing simple java	2. Solve the issues related to java setting						
program, practice to compile and run	environment variables (C3)						
java application	3. Analyse simple java application (C4)						
Unit 2: Introduction to OOP's concepts							
Implementation of OOP's concepts in	1. Apply OOP's concepts in java application (C3)						
java application such as encapsulation,	2. Solve the issues such as multiple inheritance,						
various types of Inheritance,	exception handling(C3)						

polymorphism. Apart from this other	3. Write java programs to understand more
techniques such as exception handling,	about file read and write (C3)
packages, interfaces, IO streams.	
Unit 3: Introduction to Window based a	pplications
Implementation of window based	1. Write UI applications for different look and
applications using swing components	feel (C3)
such as forms, menu based	2. Use of swing components and layout
applications. Applying event handling	managers for UI design (C3)
mechanism to the applications	3. Test UI applications (C3)
Unit 4: Database applications using JDB	C driver
Installation of JDBC driver, use of it in	1. Test various Structured Query Language
database applications, creating	(SQL) commands (C4)
database, manipulating data through	2. Write database applications using JDBC
window based applications	driver and mysql database (C3)

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning time (Hrs)					
Lecture	36	72					
Small Group Discussion (SGD)	-	-					
Self-directed learning (SDL)	-	-					
Problem Based Learning (PBL)	-	-					
Case Based Learning (CBL)	-	-					
Revision							
Assessment							
TOTAL	72	126					

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO4			
Sessional Examination 1	*	*					

Sessional Examination 2			*	*
Assignment/Presentation	*	*	*	*
Laboratory examination	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	Patrick Naughton and Herbert Schildt – "JAVA 2 – The
	Complete Reference", Tata McGraw Hill.
	George Reese - "Database Programming with JDBC and
	Java", O'Reilly
	 "Database system Concepts", Author: Abraham
	Silberschatz (Bell Laboratories), Henry F. Korth(Bell
	Laboratories) and S. Sudarshan (Indian Institute of
	Technology, Bombay, Publishers: The McGraw-Hill
	Companies, Inc.
	"Fundamentals of Database systems". Author: Elmasri and
	Navath

Name of the Pro	gram: Master of Engineering - ME (Embedded Systems)					
Course Title:	Internet of Things Lab					
Course Code:	IOT 607L Course Instructor:					
Academic Year:	2020 - 2021Semester: First Year, Semester 1					
No of Credits: 1	Prerequisites: Computer Networks, Programming					
No of credits.	aspects.					
Synopsis:	This Course provides insight on					
	1. Various elements involved in the development of application for					
	IoT.					
	2. Understanding of protocols across IoT stack.					
	3. Scripting languages like shell and python.					
	4. Client Server architecture and Python APIs of Socket					
	programming.					
	1. Database and Python Database connectivity, Python Web					
	Programming, IoT Framework.					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Explain basic principles of Python programming language. (C2)					
CO 2:	Demonstrate the usage of networking protocols across IoT stack using					
CO 2.	Raspberry Pi and Cloud. (C3)					
CO 3:	Demonstrate the fundamental concepts in Client Server architecture,					
	database implementation and web programming with Python API's. (C3)					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*		*	*						
CO 3	*		*		*						

Course content and outcomes:	
Content	Competencies
Unit 1: Python	
Introduction to Python datatypes,	At the end of the topic student should be able to:
constructors, functions, Python Class,	
Modules, exception Handling, Python	Employ Datatypes, Constructs, Packages in
Packages	python programming. (C2)
Unit 2: Raspberry PI IoT Board	

Introduction to RPI, Raspberry Pi -	Demonstrate the usage of RPI in IoT Application
Installation, first boot configuration,	Scenario. (C3)
Raspberry Pi - Sensor Interfacing,	
Sending data to Cloud.	
Unit 3: Things Board Cloud	
Installation of things board Platform,	Illustrate the usage of things board Platform. (C4)
Device, assets & dashboard Creation,	
population of data.	
Unit 4: Socket Programming	
Unix Socket Programming - Client	Illustrate the socket communication using python
Server Architecture, Python Socket	API's for RWA, stream and datagram-oriented use
Programming - Client Server	cases. (C3)
Architecture, RAW packets python	
programming	
Unit 5: Databases	
Python Database connectivity (CRUD) -	Demonstrate the usage of databases, web
Web Server Concepts - Python Web	programming using Python API . (C3)
Programming – IoT Framework.	

Learning strategies, contact hours and student learning time			
Learning strategy	Contact hours	Student learning	
		time (Hrs)	
Lecture	12	-	
Seminar	-	-	
Quiz	-	-	
Small Group Discussion (SGD)	-	-	
Self-directed learning (SDL)	-	-	
Problem Based Learning (PBL)	-	-	
Case Based Learning (CBL)	03	-	
Clinic	-	-	
Practical	24	-	
Revision	03	-	
Assessment	06	-	
TOTAL	48	-	

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	

Lab Assignment & Viva

Viva

Mapping of assessment with Cos			
Nature of assessment	CO 1	CO 2	CO 3
Sessional Examination 1	*	*	*
Assignment/Presentation		*	*
Lab Semester Examination	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 Arshdeep Bhaga, Vijay Madishetti, "Internet of things:A hands on Approach", Universities Press, ISBN:978172719547 Robert Faludi, "Building Wireless Sensor Networks", Orielly, 2012 Jean-Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet", Morgan Kaufmann Publishers, 2010, ISBN:0123751659 9780123751652 Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014 Charalampos Doukas, "Building Internet of Things With the Arduino: Volume 1", CreateSpace Independent Publishing Platform, 2012 Todor Cooklev, "Wireless communication standards", IEEE Press Houda Labiod, Hossam Afifi, Costantino De Santis, "Wi-Fi, Bluetooth, Zigbee and WiMAX", Springer Publications Madhushree Ganguli, "Getting started with Bluetooth", Premier Press, 2002, ISBN 1931841837, 9781931841832.

Name of the	Program:	Master of Engineering - ME (Embedded Systems)			
Course Title:		Seminar - 1			
Course Code: ESD 697		Course Instructor:			
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 1			
No of Credits	: 1	Prerequisites: Communication Skill			
Synopsis:	This Course provides	insight on			
	1. To select, sear	ch and learn technical literature.			
	2. To Identify a c	urrent and relevant research topic.			
	3. To prepare a t	opic and deliver a presentation.			
	4. To develop the	e skill to write a technical report.			
	5. Develop abilit	y to work in groups to review and modify technical			
	content				
Course					
Outcomes	es On successful completion of this course, students will be able to				
(COs):					
CO 1·	Show competence in identifying relevant information, defining and				
60 1.	explaining topics under discussion.				
CO 2·	Show competence in	working with a methodology, structuring their oral			
60 2.	work, and synthesizing information.				
CO 3·	Use appropriate re	gisters and vocabulary, and will demonstrate			
66 5.	command of voice modulation, voice projection, and pacing.				
CO 4·	Demonstrate that they have paid close attention to what others say and				
004.	can respond constructively.				
	Develop persuasive s	peech, present information in a compelling, well-			
CO 5·	structured, and logica	I sequence, respond respectfully to opposing ideas,			
0.	show depth of knowl	edge of complex subjects, and develop their ability			
	to synthesize, evaluat	e and reflect on information.			

Mappir	ng of CC	Os to PC)s								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*							*	*		*
CO 2	*							*	*		*
CO 3	*							*	*		*
CO 4	*							*	*		*
CO5:	*							*	*		*

Learning strategies, contact hours and student learning time

(Deemed to be University under Section 3 of the UGC Act, 1956)

Learning strategy	Contact hours	Student learning
		time (Hrs)
Lecture	-	-
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	14	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	-	-
Clinic	-	-
Practical	-	-
Revision	-	-
Assessment	-	-
TOTAL	14	-

Assessment Methods:			
Formative:	Summative:		
Seminar Topic Selection			
Synopsys review			
PPT Review			

Mapping of assessment with Cos	5				
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen Seminar

Name of the Program:		Master of Engineering - ME (Embedded Systems)					
Course Title:		Mini Project - 1					
Course Code: ESD 695		Course Instructor:					
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 1					
No of Credits: 4		Prerequisites: Any programming language and					
		circuit basics					
Synopsis:	Students are expected to select a problem in the area of their interest and						
	the area of their specialization that would require an implementation in						
	hardware / software or both in a semester						
Course							
Outcomes	On successful completion of this course, students will be able to						
(COs):							
CO 1·	Apply the objectives of the project work and provide an adequate						
CO 1.	background with a detailed literature survey						
CO 2.	Breakdown the project into sub blocks with sufficient details to allow the						
02.	work to be reproduced by an independent researcher						
CO 3·	Compose hardwar	e/software design, algorithms, flowchart,					
0.5.	methodology, and block diagram						
CO 4:	Evaluate the results						
CO 5:	Summarize the work	carried out					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	
CO 4						*					*
CO5:							*				

Course content and outcomes:						
Content	Competencies					
Phase 1						
Problem identification, synopsis	At the end of the topic student should be able to:					
submission, status submission, mid	1. Identify the problem/specification (C1)					
evaluation.	2. Discuss the project (C2)					
	3. Prepare the outline (C3)					
	4. Describe the status of the project (C2)					
	 Prepare a mid-term project presentation report (C3) 					
	6. Prepare and present mid-term project					
	presentation slides (C3, C5)					
	7. Develop project implementation in					
	hardware/software or both in chosen					
	platform (C5)					
Phase 2						
Status submission, final evaluation.	1. Prepare the progress report (C3)					
	2. Prepare the final project presentation					
	report (C3)					
	3. Prepare and present final project					
	presentation slides (C3, C5)					
	4. Modify and Develop implementation in					
	hardware/software or both in chosen					
	platform (C3, C5)					
	5. Justify the methods used and obtained					
	results (C6)					

Learning strategies, contact hours and student learning time				
Lograing strategy	Contact hours	Student learning		
Learning strategy	contact nours	time (Hrs)		
Lecture	-	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	48	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	-	-		

Clinic	-	-
Practical	-	-
Revision	-	-
Assessment	03	-
TOTAL	51	09

Assessment Methods:				
Formative:	Summative:			
Project Problem Selection	Mid-Term Presentation			
Synopsys review	Second status review			
First status review	Demo & Final Presentation			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Mid Presentation	*	*			
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Digital Signal Processing				
Course Code:	ESD 603	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 2				
No of Credits:	3	Prerequisites: Computer Networks, Programming aspects.				
Synopsis:	This Course provides	nsight on				
	1. Understanding of basics of Signal and Systems as pre-requisite.					
	2. Understanding the concepts of Fast Fourier Transforms.					
	3. Learnii	ng hardware implementation of systems.				
	4. Learnii	ng FIR and IIR Filter Designs.				
	5. Learnii	ng concepts of multi-rate signal processing in the form of				
	sampli	ng rate conversion, structures of sampling rate converters				
	and so	me applications of sampling rate converters				
	6. Understanding three optimum Weiner filters, adaptive algorithm					
	and transforming Weiner filters in to adaptive filters					
	7. Understanding architecture, memory management and pipelining					
	concepts of TMS320C67XX processor through self-stud.					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Analyse Fast Fourier Transform (FFT) algorithms on computational complexity. (C4)					
CO 2:	Describe the structures for IIR and FIR filters. (C2)					
CO 3:	Interpret Multirate Signal Processing and Adaptive Filters. (C3)					
CO 4:	Explain architecture, memory management and pipelining concepts of General and TMS320C67XX Digital Signal Processor. (C2)					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*						
CO 2	*	*	*	*	*						
CO 3		*	*	*							
CO 4	*	*									

Course content and outcomes:				
Content	Competencies			
Unit 1: Review: (Self Study)				

Introduction Classification of signals and	At the end of the topic student should be able to:	
systems, brief discussions on z-transform,	1. Outline types of signals and system. (C1)	
inverse z-transform	2. Summarize z-transform, Fourier transform,	
& Fourier transform, DFT, linear convolution	convolution. (C2)	
using circular convolution & DFT		
Unit 2: FFT Algorithms		
Radix-2 DIT-FFT Algorithm, DIF-FFT	1. Identify Computation complexity of DFT,	
Algorithm. Assignments (Problems).	Introduction to Fast Fourier Transform (FFT)	
5 5 7 7	algorithm (C1)	
	2. Describe and Sketch Radix-2 Decimation in	
	Time FFT (DIT-FFT) Algorithm and analyse its	
	computation complexity (C2, C3, C4)	
	3. Describe and Sketch Radix-2 Decimation in	
	Frequency FFT (DIF-FFT) Algorithm and	
	analyse its computation complexity (C2, C3,	
	C4)	
Unit 3: Filter Structures	- /	
IIR Filter Structure – Direct Form I & II, CSOS,	1. List Components used in filter structures,	
PSOS & Transpose structures - FIR Filter	System Representations, relation between the	
Structures – Direct Form, Cascade form,	representations, classify of IIR and FIR Systems	
Linear Phase Filter structures. Assignments	(C1, C2)	
(Problems).	2. Explain and construct IIR Filter Structure –	
	Direct Form-I, Direct Form–II, Cascade Form	
	(CSOS), Parallel Form (PSOS) & Transpose of	
	structures (C2, C5)	
	3. Explain and construct FIR Filter Structures –	
	Direct Form, Cascade form (C2, C5)	
	4. Explain Linear Phase FIR Filter structure:	
	Derivation, Frequency Response, Compute	
	Computation Complexity and construct with	
	number of filter coefficients being even and	
	odd. (C3, C5)	
Unit 4: Design of FIR filters		
Using Frequency Sampling & Windows -	1. Introduction to Frequency sampling technique	
Assignments (Problems).	design	
	2. Describe Derivation of a Transfer Function for	
	the system designed using frequency sampling	
	technique when number of samples of impulse	
	response / number of point DFT is even or odd.	

	Construct hardware for the transfer functions.
	Concept of Comb filter and resonator (C6, C5)
	3. Sample example to Design and implement FIR
	filter using Frequency Sampling technique to
	meet required impulse response (C5, P4)
	4. Illustrate Frequency responses of frequency
	selective (LP, HP, BP and BR) filters, concept of
	frequency sampling in the frequency
	responses (C3)
	5. Sample examples to Design and implement FIR
	filters with ideal frequency response using
	frequency sampling technique (C5, P4)
	6. Discuss Concept of windowing in the design of
	FIR filter. Concept of Gibb's Phenomenon and
	its effect on frequency response. Use of
	window functions to eliminate Gibb's effect
	(C2)
	7. Comparison of performances of filters
	designed with different window functions (C4)
	8. Explain Steps involved in the design of FIR
	filters with ideal frequency response and non-
	ideal frequency response (C2)
	9. Express Impulse responses of frequency
	selective filters (C2)
	10. Sample examples to design ideal and non-ideal
	frequency selective filters using windows. (C5)
Unit 5: Design of IIR Filters	
Butterworth & Chebychev filters design	1. Discuss Concepts of Analog Butterworth LP
using impulse invariance & bilinear	filter, concept of Cut-off frequency, order of
transformation techniques, Design of IIR	the filter, compute poles, pole locations in S-
filter using pole placement technique.	Plane, transfer function C3)
Assignments (Problems).	2. Explain Design steps of Analog Butterworth LP
	filter (C2)
	3. Explain Chebychev polynomials, their
	properties, Analog Chebychev LP filter
	function, concepts of frequency response,
	order of filter, pole placements of Chebychev
	LP filters on S-Plane, compute poles, Transfer
	function of LP Chebychev filter (C3)

	4.	Discuss Concepts of Impulse Invariance
		Transformation, S-Plane to Z-Plane mapping,
		steps in transformation (C2)
	5.	Discuss Concepts of Bilinear Transformation,
		frequency warping, pre-warping for the
		purpose of analog filter (Butterworth /
		Chebychev) design (C2)
	6.	Sample examples to design Butterworth and
		Chebychev LP filter using impulse invariance
		and bilinear transformations (C5)
Unit 6: Multirate Signal Processing		
Decimation, Interpolation, Sampling rate	1.	Introduction, need for multi-rate signal
conversion by a rational factor, structures,		processing, explain concept of sampling rate
Polyphase filter structures, Time variant		conversion (C2)
Filter structure, Application of Multirate	2.	Explain Decimation by an integer factor, block
signal processing to Phase Shifter, Subband		diagram, analyse of decimator in time domain
coding of Speech signal, Digital Filter Bank		and frequency domain C4)
Implementation, QMF Filter bank	3.	Explain Interpolation by an integer factor,
		block diagram, analyse of interpolator in time
		domain and frequency domain (C4)
	4.	Explain Sampling rate conversion by a rational
		factor, block diagram, analyse in time domain
		and frequency domain (C2)
	5.	Construct Implementation of Sampling rate
		converters (C5)
	6.	Discuss Concepts and construction of Poly-
		phase filter (C2)
	7.	Construct Time variant Filter (C5)
	8.	Apply Multi-rate signal processing concept to
		Phase Shifter, Sub-band coding of Speech
		signal, Digital Filter bank Implementation,
		QMF Filter bank. (C3)
Unit 7: Adaptive Filters		

Class of Optimal Filters – Predictive	1. Outline adaptive filters, some matrix
Configuration, Filter Configuration, Concept	operation.(C1)
of adaptive noise cancellation, Noise	2. Explain Optimal Weiner Filters – Predictive
Canceller Configuration. LMS adaptive	Configuration, Filter Configuration, Noise
Algorithm, Application of LMS algorithm to	Canceller Configuration (C2)
the optimal filter configurations. Adaptive	3. Explain Concept of LMS adaptive Algorithm
noise canceller as a high-pass filter	(C2)
	4. Apply LMS algorithm to the optimal filter
	configurations (C3)
Unit 7: DSP Processor	
Introduction to PDSPs - Multiplier and	1. Discuss Introduction to PDSPs – Multiplier and
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2)
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory,	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2) Explain Concept of Multiple access memory,
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory, Multiported Memory, VLIW architecture,	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2) Explain Concept of Multiple access memory, Multiported Memory, VLIW architecture (C2)
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory, Multiported Memory, VLIW architecture, Pipelining, Special	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2) Explain Concept of Multiple access memory, Multiported Memory, VLIW architecture (C2) Explain Concept of Pipelining, Special
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory, Multiported Memory, VLIW architecture, Pipelining, Special addressing modes, On-chip Peripherals.	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2) Explain Concept of Multiple access memory, Multiported Memory, VLIW architecture (C2) Explain Concept of Pipelining, Special addressing modes, On-chip Peripherals. (C2)
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory, Multiported Memory, VLIW architecture, Pipelining, Special addressing modes, On-chip Peripherals. TMS320C6711 DSP processor: Architecture,	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2) Explain Concept of Multiple access memory, Multiported Memory, VLIW architecture (C2) Explain Concept of Pipelining, Special addressing modes, On-chip Peripherals. (C2) Explain Concepts on Architecture, memory
Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory, Multiported Memory, VLIW architecture, Pipelining, Special addressing modes, On-chip Peripherals. TMS320C6711 DSP processor: Architecture, Instruction set and	 Discuss Introduction to PDSPs – Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes (C2) Explain Concept of Multiple access memory, Multiported Memory, VLIW architecture (C2) Explain Concept of Pipelining, Special addressing modes, On-chip Peripherals. (C2) Explain Concepts on Architecture, memory organization and pipelining of TMS320c67XX

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
	Viva		

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	CO 4
Sessional Examination 1	*	*		
Sessional Examination 2			*	
Assignment/Presentation		*	*	
End Semester Examination	*	*	*	*

Feedback Process	•	End-Semester Feedback
	1.	Sanjith K Mitra, "Digital Signal Processing", McGraw Hill Education 4 Edition July 2013
	2.	Oppenheim and Schafer, "Digital Signal Processing", Pearson, First Edition, 1975.
	3.	Roman Kuc, "Digital Signal Processing", McGraw-Hill Education, 1988.
Reference Material	4.	Proakis and Manolakis, "Digital Signal Processing", Prentice – Hall, Inc., Third Edition, 1996.
	5.	Rabinder and Gold, "Theory and Application of Digital Signal Processing", Prentice Hall India Learning Private Limited, 1988.
	6.	Hwei P Hsu, Schaum's Outline of "Signals and Systems", 3rd Edition, 2013.
	7.	Symon Haykins, "Signals and Systems", Wiley, Second Edition, 2002.

Name of the Pro	me of the Program: Master of Engineering - ME (Embedded S			
Course Title:		Device Drivers		
Course Code: ESD 604		Course Instructor:		
Academic Year: 2020 - 2021 Semester: First Year, Semester 2		Semester: First Year, Semester 2		
No of Credits: 3 Prerequisites: Basic C Programming		Prerequisites: Basic C Programming		
Synopsis:	This Course provides	insight on		
	1. Insight	into Linux kernel programming.		
	2. Knowle	edge about the framework used in building the Linux		
	device	driver.		
	3. Concer	ot of designing proc and ioctl needed to build a		
	device	driver		
	4. Techni	ques to debug kernel programs		
	5. Insight into designing USB drivers.			
Course				
Outcomes	On successful completion of this course, students will be able to			
(COs):				
CO 1:	Explain the broad concept of device drivers and build character drivers			
CO 2:	Describe design of kernel modules and debugging these modules			
CO 3:	Handle concurrency,	race condition and understand the importance of		
CO 3.	time while designing	a device driver		
CO 4:	Allocate dynamic me	mory and communicating with devices though I/O		
ports				
CO 5:	Demonstrate and design USB drivers on a kit			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*	*								
CO 3		*	*								
CO 4	*		*								
CO 5	*				*						

Course content and outcomes:						
Content	Competencies					
Unit 1:	At the end of the topic student should be able to:					
Introduction to Device Drivers	1. Describe the broad design of device driver					
	(C3)					

Unit 2:		
Building & Running Modules.	1.	Compile and load modules using a make file (C4)
Unit 3:		
Character Driver.	1.	Explain the structure of a character driver (C3)
Unit 4:		
Debugging Techniques.	1.	Debug modules using prink, proc and kdb (C4)
	2.	Design of loctl used in building device drivers
		(C5)
Unit 5:		
Concurrency and Race Condition	1.	Illustrate the problems associated with
		concurrent device drivers (C3)
	2.	Describe the problems associated with race
		condition while designing a device driver (C3)
Unit 6:		
Advanced Character Driver Operations		1. Execute bottom half through deferred
		work (C4)
Unit 7:		
Time, Delay and Deferred Work		1. Use the concept of delays (C2)
		2. Explain the concept of timers in Linux
		kernel (C2)
Unit 8:		
Allocating Memory		1. Allocate dynamic memory (C3)
		2. Explain the concept of memory barriers
		(C3)
Communicating with Hardware		1. Communicate with the devices through
		I/O ports (C4)
Interrupt Handling		1. Illustrate the concept of writing interrupt
11		nandlers (C4)
		1 Church we of a LICD driver (C4)
		1. Structure of a OSB driver $(C4)$ 2. Design a USB driver $(C5)$

Learning strategies, contact hours and student learning time						
Learning strategy Contact hours Student learning time (Hrs						
Lecture	30	60				
Quiz	02	04				

Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2			*	*			
Assignment/Presentation		*		*	*		
End Semester Examination	*	*	*	*	*		

Feedback Process	End-Semester Feedback
	1. Alessandro Rubini, "Linux Device Drivers", (Nutshell
	Handbook), O'Reilly Publishers, 2009.
	2. John Madieu, "Linux Device Drivers Development: Develop
	customized drivers for embedded Linux", Packt Publishing,
	2017.
	3. Robert Love, "Linux Kernel Development", Addison Wesley,
	Third Edition, 2010.
Poforonco Matorial	4. Daniel P. Bovet, Marco Cesati, "Understanding the Linux
	Kernel", O'Reilly Media, Third Edition, 2008.
	5. Wolfgang Mauerer, "Professional Linux Kernel Architecture",
	Wrox, 2008.
	6. Sreekrishnan Venkateswaran, "Essential Linux Device
	Drivers", Prentice Hall, 2008.
	7. W. Richard Stevens, Stephen A. Rago, "Advanced
	Programming in the UNIX Environment", Addison Wesley,
	Third Edition, 2013.

8. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, "Unix
Network Programming, Vol1: Sockets", Pearson Education
India, Third Edition, 2015.

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Embedded Systems				
Course Code:	ESD 604	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 2				
		Prerequisites: Microprocessor architecture,				
No of Credits: 3	3	Microcontroller Architecture, Assembly language and				
		Number systems				
Synopsis:	This Course pro	vides insight on				
	1. 1	This course provides the knowledge of ARM Cortex M3				
	F	Processor architecture				
	2. 1	This course provides the knowledge of Microcontroller				
	k	based on ARM Processor architecture and its Registers and				
	I	nstruction sets to write Assembly and Embedded C				
	F	Programming.				
	3. 1	This course provides the concept of Interfacing and				
	F	Programming Sensors and Peripherals to Microcontrollers.				
	4. 1	This course provides the concept of Communication				
	F	Protocols required for multi-processor communication.				
	5. 1	This course provides the concept of Real time operating				
	S	systems on Microcontrollers.				
	6. 1	This course provides the concept of Designing Real Time				
	E	Embedded Systems using ARM Microcontroller.				
Course						
Outcomes	On successful c	ompletion of this course, students will be able to				
(COs):						
CO 1·	Employ the knowledge of Microcontrollers to build Embedded systems.					
60 1.	(C3)					
CO 2:	Explain the co	oncept of Programming ARM Microcontrollers using				
	Assembly and E	mbedded C. (C2)				
(0.3)	Design a Real ti	me Embedded Systems by interfacing Sensors, Actuators				
CO 3.	and porting Rea	I time operating systems. (C5)				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2	*	*	*		*						
CO 3	*	*	*		*						

Course content and outcomes:

Content	Competencies						
Unit 1: Introduction to Embedded Systems							
Design Challenges, Processors Technology, Design Technology	 At the end of the topic student should be able to: 1. Describe the Design issues in designing the Embedded Systems.(C1) 2. Discuss the design technology associated with Embedded Systems.(C2) 						
Unit 2: Introduction to ARM Cortex pro	Deessor						
Variants of Cortex and ARM versions, Comparison of M-series processor, Architecture, Programmers Model, APSR register, Memory Model, Exception, Interrupts, Reset Unit 3: Instruction Set Architecture More on Memory System, Exceptions and Interrupts, NVIC, Memory Protection Unit, Assembly	 Explain about ARM Processor architecture (C2) Describe ARM Cortex m3 processor data path, Register set, Programming models and memory map (C2) Describe about ARM Cortex M3 Processor Instruction set. (C2) Describe about ARM Processor system bus and Interrupt controller (C2) Describe about interrupt and Exception handling (C2) Describe ARM Microcontroller architecture. (C2) Describe ARM Cortex memory system. Describe interrupt and Exception handling (C2) Describe NVIC, Memory Protection Unit. (C2) 						
Programming, Embedded C programming, CMSIS, Startup Code	 Discuss CMSIS implementation in ARM Cortex.(C2) 						
Unit 4: Introduction to LPC13/17xx N	licrocontroller						
Memory Mapping, Registers involved and programming with GPIO, PWM	 Discuss Memory Mapping, Registers involved and programming with GPIO, PWM. (C3) Apply knowledge of ARM Microcontroller architecture to rig up Embedded system circuits(C3) 						
Unit 5: Data Acquisition System							
ADC, Types of ADC, Choosing the ADC, DAC Unit 6: Serial Communication	 Identifying various types of ADC. (C1) Review ADC and DAC selection criteria. (C2) 						
UART, I2C, SPI, Interfacing	1. Discussing various types of Serial Communication mechanism. (C2)						

Unit 7: USB BUS		
Speed Identification on the bus, States,	1.	Identify USB types, Firewire devices, ports,
Packets, Data flow types, Enumeration,		cables.
Descriptors, USB Interface – C Programs	2.	Describing Enumeration, Descriptors
		mechanism in USB.(C2)
Unit 8: CAN BUS		
Introduction, Frames, Bit stuffing,	1.	Describe the nature of CAN and the basic CAN
Types of errors, Nominal Bit Timing, A		protocol, and the basic structure of a CAN
simple application with CAN		network. (C2)
	2.	Prepare a simple application with CAN. (C3)
Unit 9: Introduction to Multitasking	in N	Aicrocontrollers
Variants of RTOS, FreeRTOS, UCOS,	1.	Describe about Real time operating systems
uCLinux, FreeRTOS on Cortex based		role in building real time systems (C3)
Microcontrollers, TASK CREATION,	2.	Describe about Designing Real Time
QUEQUES, SEMAPHORE, MUTEX,		Embedded systems by interfacing peripherals
Application development		and actuators (C2)
	3.	Design a Real time Embedded system by
		writing applications on top of Real time
		operating systems (C5)
Unit 10: Designing a Digital Camera		
Introduction, Requirement,	1.	Summarize the stages involved in designing a
Specifications, Implementation, Testing		digital camera. (C2)

Learning strategies, contact hours and student learning time		
Lograing strategy	Contact bours	Student learning
Learning strategy	Contact nours	time (Hrs)
Lecture	30	60
Quiz	02	04
Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

A second such B.A.s.h.s.dec	
Assessment Wethods:	

Formative:	Summative:
Internal practical Test	Sessional examination
Theory Assignments	End semester examination
	Viva

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*		
Sessional Examination 2		*	*	
Assignment/Presentation	*	*		
End Semester Examination	*	*	*	

Feedback Process	End-Semester Feedback
	 Joseph Yiu, "The definitive guide to the ARM Cortex-M3", Elsevier, 2nd Edition, 2010.
Reference	 Frank Vahid, Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", Wiley India, ISBN:81-265-0837-X, 2007.
Material	 Richard Barry, "NXP Semiconductors, LPC13xx/17xx User Manual", 2012.
	NXP Semiconductors, "LPCzone Examples", 2012.
	5. "FreeRTOS Reference Manual", Real Time Engineers Ltd., 2016.

Name of the Pro	of the Program: Master of Engineering - ME (Embedded S				
Course Title:		Embedded Software Design			
Course Code:	ESD 606	Course Instructor:			
Academic Year:	2020 - 2021	Semester: First Year, Semester 2			
No of Credits:	3	Prerequisites:EmbeddedSystemsObjectoriented padagrime			
Synopsis:	 This Course provides insight on Students learn the concept of big data characteristics, batch and lambda architecture. This course introduces students to basics file systems in Big Data This course helps the student to understand the concepts of Hadoop framework, Spark framework and their internals. This course helps the students to learn Map-reduce programming, Spark programming. 				
Course Outcomes (COs):	On successful comple	tion of this course, students will be able to			
CO 1:	To build and analyse models for embedded application using the concept of UML. (C4).				
CO 2:	To work with UML tools and represent the model using suitable diagrams. (C3)				
CO 3:	To write applications	using the OOP concepts.(C3)			
CO 4:	To write applications using JAVA constructs for general purpose and embedded systems. (C3)				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2	*	*			*						
CO 3	*		*								
CO 4	*		*								

Course content and outcomes:				
Content	Competencies			
Unit 1: Object-oriented principles of	composition			
Inheritance - Aggregation and	At the end of the topic student should be able to:			
containment – Delegation -	1. Explain the concept of Inheritance. (C2)			

ED BY LIFE	(Deemed to be University under Section 3 of the UGC Act, 1956)	

Structural design patterns for composing objects	2. Explain the concept of Aggregation and containment (C2)
	3 Explain the concept of Delegation (C2)
	4 Explain the concept of Structural design
	natterns for composing objects (C2)
Unit 2: Specification of object-oriented	l systems
Specification of object-oriented	1. Basics of UML concepts. (C1).
systems: UML for specifying functional	2. Design UML modelling object-oriented
requirements - Use cases and	systems. (C2).
Scenarios - Subsystems, packages and	3. Explain and illustrate Class diagrams
deployment - Assigning	Collaboration diagrams Sequence
responsibilities to objects in UML-	diagrams, State diagrams. (C3).
Specifying quality attributes.	
Safety	
Unit 3: Modelling object-oriented sy	stems:
UML for modelling object-oriented	1. Building models using UML tools. (C3)
systems- Class diagrams- Collaboration	
diagrams-Sequence diagrams- State	
diagrams.	
Unit 4: Modelling real-time embedde	ed systems behaviours
UML real-time profile.	1. Review and understand the UML real-time
	profile. (C3).
Unit 5: Developing object-oriented sy	ystems in Java
Classes, interfaces, methods- Generics-	1. Design Classes, interfaces, methods.(C3).
Scope rules and access control. Inner	2. Explain the Generics-Scope rules and
classes-Functional programming	access control.(C3).
constructs – lambdas-Threads,	3. Explain and illustrate Functional
concurrency control and timers-I/O,	programming constructs.(C3).
Streams and network I/O-Security and	4. Explain and lambdas.(C3).
Cryptography.	5. Explain and illustrate the Threads,
	concurrency control and timers-I/O,
	Streams and network concepts.(C3).
	6. Explain and illustrate the I/O-Security and
	Cryptography.(C4).

 Discover the Challenges in testing object- oriented Program. (C3).
2. Explain the concept of Functional testing.
(C2).
 Testing quality properties of the system. (C2).
4. Practice Java SE Embedded. (C2).
 Overview and technical details-Compact1, Compact2, and Compact3 profiles and their capabilities. (C2). Designing systems using embedded profile. (C2).
cation for Java:
 Design Real-time threads. (C3). Explain the concept of Asynchrony-Time. Clocks and Timers-Systems. (C4). Design and explain the POSIX real-time signals. (C4). Design Examples of programs using real- time specifications for Java. (C4).

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning			
		time (Hrs)			
Lecture	36	72			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	-	-			
Clinic	-	-			
Practical	36	72			
Revision	-	-			
Assessment	6	-			

101AL 78 144	TOTAL	78	144
--------------	-------	----	-----

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	CO 4
Sessional Examination 1	*	*		
Sessional Examination 2		*	*	
Assignment/Presentation	*	*	*	*
Laboratory examination	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition), Addison-Wesley Professional. 2003. The Java Programming Language. Ken Arnold, James Gosling and David Holmes. Addison-Wesley Professional; 4 edition (August 27, 2005) http://www.oracle.com/technetwork/java/embedded/resou rces/tech/compact-profiles-overview-2157132.html Realtime Specification for Java 2.0 https://java.net/projects/rtsj-2/pages/Home

Name of the	me of the Program: Master of Engineering - ME (Embedded Systems)					
Course Title: Mobile Application Development using Android		Mobile Application Development using Android				
Course Code:	CSE-605	Course Instructor:				
Academic Yea	ar: 2020-2021	Semester: First Year, Semester 2				
No of Credits	: 3	Prerequisites: Basic knowledge of OOP's concepts, Java				
		programming language				
Synopsis:	This Course provides	insight on				
	1. This course	would provide fundamental knowledge about android				
	platform.					
	2. The course w	ill also provide skill sets to design and develop android				
	applications for mobile devices.					
	3. This course v	vill provide basic knowledge about android application				
	communication o	f data which are hosted in remote systems.				
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Explain android architecture and framework					
CO 2:	Discuss major building blocks of an android application					
CO 3.	Write android application	ations using various UI components and data handling				
CO 5.	using SQLilte					
CO 4:	Discuss advanced t	opics such as LBS, Mapping, Network connectivity,				
CO 4 .	background threads,	adapters				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2	*	*		*							
CO 3		*	*		*						
CO 4		*	*	*	*						

Course content and outcomes:				
Content	Competencies			
Unit 1: Introduction				
Introduction to Android and Eclipse	At the end of the topic student should be able to:			
environment, Android application	1. Explain android architecture (C2)			
framework, Unique aspects of	2. Discuss major building blocks such as activity,			
	services, broadcast receiver and content provider			
	(C2)			

mobile application, software	3.	Identify different features in android studio (C1)
engineering issues for mobile	4.	Discuss software engineering issues for mobile
application development		application development (C2)
Unit 2: Android building blocks		
Android manifest file, Dalvik virtual	1.	Explain Android manifest file (C2)
machine, DDMS, ADT, Adb, Android	2.	Discuss DVM, DDMS, android emulator (C2)
emulator, Activities and intents,	3.	Describe android activity (C2)
creating a project, Android activity	4.	Illustrate android activity lifecycle (C2)
lifecycle, starting a new 'Hello World'	5.	Discuss the issues related running and debugging
Android application, Running		applications (C2)
and Debugging applications.		
Unit 3: Android Screen UI Compone	ents	5
Layouts: LinearLayout, AbsoluteLayout,	1.	Describe different types of layouts (C2)
TableLayout, RelativeLayout,	2.	Distinguish between various types of layout (C2)
FrameLayout, ScrollView, Views:	3.	Identify different types of android UI elements
TextView, EditText, and Button views,		required for developing forms (C1)
TimePicker and DatePicker views,		
ListView and the Spinner views, Gallery		
and ImageSwitcher views, context		
sensitive menu .		
Unit 4: Data management with SQLi	te	
SQLite architecture, creating and using	1.	Describe SQLite architecture (C2)
databases, DBAdapter class, Common	2.	Discuss the use of SQLite database (C2)
SQLite commands, creating triggers,	3.	Discuss the CRUD operations (C2)
logging insert, delete, update using	4.	Apply CRUD operations to develop a simple
SQLite, managing persistent data,		healthcare application (C3)
Development of a simple healthcare		
application		
Unit 5: Advanced topics		
Adapters, background threads,	1.	Explain adapter class (C2)
Notifications, Location based services,	2.	Discuss the various components of notification
Mapping, network connectivity		object in an android application (C2)
services, telephony services	3.	Discuss the use location based service classes
		(C2)
	4.	Identify the classes required for network
		applications (C1)
	5.	Define android service (C2)
	6.	Explain life cycle of service (C2)

7.	Discuss	on	background	threads	in	android
	applicat	ions	(C2)			

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours Student					
		time (Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
	Viva		

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	
Sessional Examination 1	*	*			
Sessional Examination 2			*	*	
Assignment/Presentation		*	*	*	
End Semester Examination	*	*	*	*	

Feedback Process	End-Semester Feedback				
Reference Material	1. Lauren Darcey and Shane Conder, "Sams Teach Yourself Android				
	Application Development in 24 Hours", Sams Publishing, First Edition,				
	ISBN-10: 0321673352, ISBN-13: 978-0321673350, 2010.				
	2. Ed Burnette, "Hello, Android: Introducing Google's Mobile				
	Development Platform", Pragamatic, Third Edition, ISBN-10:				
	1934356565, ISBN-13: 978-1934356562, 2011.				

3. Rick F	Rogers	and	John	Lombardo,	"Android	Application
Developme	nt: Prog	ramming	;", O'R	Reilly Media,	First Editio	on, ISBN-10:
059652147	2 , ISBN-:	13: 978-0)59652	21479 , 2009.		
4. Reto N	/leier ,	"Profess	ional A	Android 2 Ap	plication D	evelopment
(Wrox Prog	rammer	to Progr	amme	er)", Wrox, Se	econd Editio	on, ISBN-10:
047056552	7 <i>,</i> ISBN-1	.3: 978-0	47056	5520, 2010.		
	 Rick F Developme 0596521472 Reto N (Wrox Prog 047056552 	 Rick Rogers Development: Prog 0596521472, ISBN: 4. Reto Meier, (Wrox Programmer 0470565527, ISBN-1 	 Rick Rogers and Development: Programming 0596521472, ISBN-13: 978-0 Reto Meier, "Profess (Wrox Programmer to Progr 0470565527, ISBN-13: 978-0 	 Rick Rogers and John Development: Programming", O'R 0596521472, ISBN-13: 978-059652 Reto Meier, "Professional A (Wrox Programmer to Programmer 0470565527, ISBN-13: 978-047056 	 Rick Rogers and John Lombardo, Development: Programming", O'Reilly Media, 0596521472, ISBN-13: 978-0596521479, 2009. Reto Meier, "Professional Android 2 Ap (Wrox Programmer to Programmer)", Wrox, Se 0470565527, ISBN-13: 978-0470565520, 2010. 	 Rick Rogers and John Lombardo, "Android Development: Programming", O'Reilly Media, First Editio 0596521472, ISBN-13: 978-0596521479, 2009. Reto Meier, "Professional Android 2 Application D (Wrox Programmer to Programmer)", Wrox, Second Editio 0470565527, ISBN-13: 978-0470565520, 2010.

Name of the	Program:	Master of Engineering - ME (Embedded Systems \)			
Course Title:		Web Application Development			
Course Code:	CSE-611	Course Instructor:			
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2			
No of Credits	: 3	Prerequisites: Basic C , Fundamentals of Object			
		Oriented Programming			
Synopsis:	This Course provides	insight on			
	1. This course provid	les an insight into web applications.			
	2. This course prov	vides knowledge about databases and their use in			
	developing web a	pplications.			
	3. This course introduces ASP.NET technology and its use to build we				
	applications.				
	4. This course provid	les knowledge about Client-Server Architecture.			
	5. This course provid	les knowledge about HTML, CSS, Javascript			
	6. This course provid	les knowledge about Web Service.			
Course					
Outcomes	On successful completion of this course, students will be able to				
(COs):					
CO 1:	Design a database and normalize the database.				
CO 2:	Identify the appropriate types of data to be stored.				
CO 3:	Develop a Web application using ASP.NET.				
CO 4:	Recognize the need for Client-Server Architecture.				
CO 5:	Construct a web page	using HTML and CSS.			

Маррі	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2		*	*								
CO 3		*	*		*						
CO 4		*		*							
CO 5		*	*		*						

Course content and outcomes:	Course content and outcomes:							
Content	Competencies							
Unit 1: Database Concepts								
Introduction to Transact SQL, Database	At the end of the topic student should be able to:							
optimization Techniques	1. Design and develop a database (C5)							
(Normalization), Creating database,	2. Apply normalization to optimize a database							
Queries, sub queries, Joins, Stored	(C3)							
Procedures, Triggers	3. Manipulate data in a database through							
Tools: SQL server 2008 R2	Queries (C3)							
	4. Create stored procedures, Triggers to							
	manipulate data in database (C3, C5).							
Unit 2: Programming								
ASP.NET: Introduction to ASP.NET, Clint	1. Use HTML to create webpages (C3, C5)							
server and web application design of	2. Use CSS and JavaScript on web pages (C3, C5)							
presentation, business logic	3. Design and Develop web applications using							
and storage functionality. WIN form	ASP.Net (C3, C5)							
and WEB form Designs using ASP.NET,	4. Define, Client-Server Model (C1)							
Silverlight, Windows Client,	5. Discuss the need for Client-Server							
HTML basics, CSS, AJAX, Java Scripts,	Architecture (C3, C5).							
Styling with Themes,	6. Develop forms using WIN forms (C3, C5).							
Componentization (Code behind, Data	7. Summarize the need for Componentization							
Layers, User Controls), Roles and	(C3, C6)							
Profiles								
Tool: Visual Studio 2010								
Unit 3: Web Services								
The life Cycle of a Web Service,	1. Explain lifecycle of Web services (C2).							
Structure of Web Service, Creating a	2. Define SOAP, Data Contracts (C2).							
Web Service, SOAP, Data Contracts,								
Binding, Security, Discovery, Publishing,								
WSDL								

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning					
		time (Hrs)					
Lecture	30	60					
Quiz	02	04					
Small Group Discussion (SGD)	02	02					

Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
	Viva			

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Sessional Examination 1	*	*	*			
Sessional Examination 2			*	*	*	
Assignment/Presentation	*	*	*	*	*	
End Semester Examination	*	*	*	*	*	

Feedback Process	•		End-Semester Feedback
Reference Material]	1.	Beginning ASP.NET 4.0 with C# byChris Hart, John Kauffman,
			David Sussman, Chris Ullman
	2	2.	Professional C# - Simon Robinson, Christian Nagel- Wiley
			Publishing, Inc.

Name of the	Program:	Master of Engineering - ME (Embedded Systems)			
Course Title:		Multicore Program Optimization			
Course Code:	CSE-612	Course Instructor:			
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2			
No of Credits	: 3	Prerequisites: computer architecture knowledge,			
		programming – preferably c			
Synopsis:	This Course provides	insight on			
	1. They will ເ	inderstand learn various architectures and			
	technological trends				
	2. Able to understand difference between single core system				
	execution and multicore systems environments				
	3. Memory consistence models and applications				
	4. Able to un	derstand optimisation and performances			
Course					
Outcomes	On successful completion of this course, students will be able to				
(COs):					
CO 1·	Distinguish between single core , multicore architectures, various				
CO 1 .	architectures, trends, various levels of parallelisms				
CO 2:	Illustrate Various cache coherence, issues, memory consistency m				
CO 2.	various protocols, working principles, performances				
CO 3:	Analyse Justification of	of primitives, optimisations, applications			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2				*	*						
CO 3			*	*							

Course content and outcomes:						
Content	Competencies					
Unit 1: Introduction to parallel comput	ers					
Introduction, why parallel architecture,	At the end of the topic student should be able to:					
application trends, technology trends,	1. Describe the instruction formats for I-type,					
architectural trends	R-type and J-type instructions of the DLX					
(chapter 1 of text 3(section 1.1))	pipelined machine. Also provide one					
	example each (c1)					
	2. Consider the 5 stages of the DLX pipelined					
	instruction execution THREE instruction					

		format. Indicate what actions take place in
		each stage for the above mentioned
		instructions (C2)
	3.	Discuss why multicore systems better than
		single core systems? Justify(c3)
	4.	Define the addressing modes for DLX
		instructions with example(c3)
Unit 2: Instruction Level Parallelism (ILP)	
(Chapter 3(section3.1) of text 2)	1.	Write and define the DLX architecture (C4)
	2.	Define the performance issues in
		pipelines(C2)
	3.	What is meant by a data hazard? Explain.
		Also explain RAW, WAW and WAR
		hazards(C3)
	4.	What is meant by data hazard? Explain.
		Also describe how data hazard can be
		minimized by compiler scheduling(C3)
Unit 3: Cache memory	1	
(Chapter 5 of text2)	1.	List and explain the 3 address mapping
		techniques. Provide one common
		example to each illustrate all
		techniques(C2)
	2.	Compare and contrast the 3 address
		mapping techniques. Which according to
		you is the best and why?(C4)
	3.	Explain direct mapping, set associative
		and the fully associative address mapping
		techniques. Provide one common
		example to illustrate all the 3
		techniques(C4)
	4.	Define the significance of following terms
		i). write through ii) write allocate iii) no
		write allocate (C2)
Unit 4: Shared Memory Multiprocessors	S	
General architecture, Introduction to		1. Given the following data, determine
Interconnect, communication latency		the average memory access time and
Problem of cache coherence; memory		miss rate in each case? Which one has

consistency models: SC, PC, TSO, PSO,	the lower miss rate? A split 8 KB
WO/WC, RC; snoopy protocol:	instruction cache with a 8 KB data
invalidate vs. update, MSI,MESI,	cache? Or a 16 KB unified cache?
MOESI, MOSI; performance trade-offs;	Assume a hit takes 1 clock cycle and a
synchronization primitives: atomic	miss penalty is 50 clk cycles. Also a load
primitives; locks: TTS, tickets, array;	or store takes 1 extra clk cycle on a
barriers: central and tree; performance	unified cache. For the 8 kB instruction,
implications in shared memory	cache miss rate is 0.64% and for the 8
programs; chip multiprocessors: why	KB data cache it is 6.47% and for the
CMP (Moore's law, wire delay); shared	unified cache it is 1.99%. (C5)
L2 vs. tiled CMP; core complexity;	2. Define the write atomocity w.r.t.
power/performance; (Chapter 5 of Text	distributed shared multiprocessor
3 and Intel manuals and other research	system (C4)
papers)	3. Describe the performance trade off
	with MESI and MOSI protocols(C6)
	4. Describe the performance trade off
	with MOESI and MESI protocols(C6)
Unit 5: Introduction to Basic optimization	on
HotSpot, Faster Algorithms, ILP, Data	1. Define the software optimisation
Dependency, Branching, Memory,	pitfalls(C3)
Loops, Slow Operations (Selected	2. Define the attributes of benchmark with
Topics in Chapter 1-14 of Text 1)	suitable example(C5)
	3. Define the various issues which effects the
	memory performances(C3)
	4. Describe with example the factors which
	effects the performances under loops (C4)
Unit 6: Introduction to Performance To	ols (Intel Software Tools)
Benchmark, Optimizing Compilers,	1. List miss rate reduction techniques and
Profilers, Performance Tools, Code	explain any 2 compiler optimization
Coverage Tools, Sampling vs	techniques in detail (C3)
Instrumentation	2. What do you understand by hardware
	prefetching of data? How it is different
	from compiler controlled prefetching (C5)
	3. Explain the 3 compiler optimization
	techniques(C3)

ILP vs TLP, Data vs Task Parallelism, Parallel Application Case Studies, Parallelization Process (Chapter 2 of Text 3, Chapter 15 of Text 1)	 Describe the difference between instruction level and task level parallelism with appropriate example(C2) Explain the following (C2) Shared memory versus distributed memory parallel computing versus serial computing Explain, compare and contrast the following 4 terms: SISD, SIMD, MISD, MIMD(C3)
Unit 8:Programming for Performance, Data Access and Communication, Orchestration, Performance factors, Case-Studies (Chapter 3 of Text 3)	 Write the complete state transition table for MSI protocol. Let the table have the column like (i)Current state of the cache block (ii) Transaction generated or observed by the controller (iii)Action by the controller (iv) New state of the cache block (iv)Data supplied by (C5) Explain how data can be partined for performance, which method best among all(C4) Assume a multiprocessor system consists of 3 processors, p1, p2, and p3, each having its own local cache, c1, c2, and c3, respectively. The coherence among the caches is maintained using MSI protocol. Describe the state transitions of all the three caches for the following memory operations on a memory block u. P2 reads U P1 Reads to u P1 writes to u P3 reads u Wite P2 wites to u (C4)
	vii. P2 wites to u(C4)
Unit 9: MultiThreading with Open MP	

Threading, High Level vs Low Level	1.Expla	ain the following openmp constructs with
Threading, Threading Goals and Issues,	examp	les
Introduction to OpenMP pragmas,	a)	#pragma omp parallel
Execution Model and Memory Model,	b)	#pragma omp for
Advanced OpenMP Topics (Chapter 16-	c)	<pre>#pragma omp parallel shared(n) private (i)</pre>
17 of Text 1 and other material)	d)	#pragma omp single
	e)	#pragma omp section (C3)
	2. EX	plain the following openmp clauses with
	examp	les
	i.	firstprivate
	ii.	lastprivate
	iii.	nowait
	iv.	barrier
	٧.	critical (C4)
	3. Expl	ain the following openmp functions with
	examp	les.
	i.	omp_get_thread_num()
	ii.	omp_set_num_threads()
	iii.	omp_get_num_threads() (C3)
Unit 10: Multithreaded Applications		
Some applications in Integer	1.	Describe comprehensively key features of
Programming, Digital Signal Processing		various performance tools (C2)
(Video Codec) (Chapter 18 of Text 1and	2.	Consider the water storage at dams,
other material)		calculate the performance of the
		algorithms by considering the following
		factors -1. How much water will be stored
		during summer, rainy season, evaporated
		during summer and winter. Calculate the
		benchmarks, perfomace, identify the time
		consuming hotspots, find the mispredicted
		branches , loops, algorithmic issues. (C6)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning			
		time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			

Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
	Viva		

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*		
Sessional Examination 2		*	*	
Assignment/Presentation		*	*	
End Semester Examination	*	*	*	

Feedback Process	•		End-Semester Feedback
Reference Material		1.	The Software Optimization Cookbook High Performance
			Recipes for IA-32 Platforms, Richard Gerber, Aart J. C Bik,
			Kevin B. Smith, and Xinmin Tian, 2nd Edition, Intel Press
		2.	JComputer Architecture: A Quantitative Approach, Morgan
			Kaufmann Publishers,. L. Hennesey and D. A. Patterson. 3rd
			Edition
		3.	Parallel Computer Architecture: A Hardware/Software
			Approach. Morgan Kaufmann Publishers, D.E. Culler, J. P.
			Singh, with A. Gupta, 2nd Edition

Name of the	Program:	Master of Engineering - ME (Embedded Systems)		
Course Title:		IT Project Management		
Course Code:	CSE 631	Course Instructor:		
Academic Yea	ar: 2020 – 2021	Semester: First Year, Semester 2		
No of Credits	: 3	Prerequisites: Familiarity in developing application using		
		any high level language		
Synopsis:	This Course provides	insight on		
	1. The concept of so	ftware development process and project management		
	2. Illustrates the diff	erence between a lab assignment and group project		
	3. Help the students	to understand the finer points of Project management		
	4. Bring awareness a	about the processes, tools and techniques involved in the		
	field of IT project	management		
Course				
Outcomes	On successful comple	tion of this course, students will be able to		
(COs):				
CO 1:	Illustrate the importance of project planning.			
co 2:	Discuss and demonst	rate various tools applicable for different phases of the		
02.	software project.			
CO 3:	Illustrate the importa	nce of Change management.		

Mapping of COs to POs											
COs	PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	P06	<i>PO</i> 7	PO 8	<i>PO</i> 9	PO 10	PO 11
CO 1	*	*									
CO 2		*	*								
CO 3	*		*								

Course content and outcomes:								
Content	Competencies							
Unit 1: Software Project Planning								
Understand the Project Needs, Create the Project Plan, Diagnosing Project Planning Problems	 At the end of the topic student should be able to: 1. Understand the project needs, necessity of plan, Define the Project Plan, Diagnosing Project Planning Problems (C1) 							
Unit 2: Estimation								

Elements of a Successful Estimate,	1. List the importance of estimation and
Wideband Delphi Estimation, Other	describe different estimation techniques (C2)
Estimation Techniques, Diagnosing	2. Discuss the significance of Reviews and
Estimation Problems.	different review techniques (C2)
Unit 3: Project Schedules	
Building the Project Schedule,	1. Outline the steps in building project schedule.(C1)
Managing Multiple Projects, Use the	2. Indicate mechanism of managing multiple
Schedule to Manage Commitments,	projects. (C2)
Diagnosing Scheduling Problems.	
Unit 4: Reviews	
Inspections, Deskchecks,	1. Discuss the significance of Reviews and different
Walkthroughs, Code Reviews, Pair	review techniques (C2)
Programming, Use Inspections to	
Manage Commitments, Diagnosing	
Review Problems.	
Unit 5: Software Requirements	
Requirements Elicitation, Use Cases,	1. Introduce to requirement elicitation techniques,
Software Requirements Specification,	design and demonstrate the requirement
Change Control, Introduce Software	documentation by field visits(C2)
Requirements Carefully, Diagnosing	
Software Requirements Problems	
Unit 6 : Design and Programming	
Review the Design, Version Control with	1. Illustrate the key steps in design and
Subversion, Refactoring, Unit Testing,	programming phase. Version control and unit
Use Automation, Be Careful with	testing significance (C3)
Existing Projects, Diagnosing Design and	
Programming Problems	
Unit 7: Software Testing	
Test Plans and Test Cases, Test	1. Define the test plans, significance of test phase
Execution, Defect Tracking and Triage,	and the test case characteristics. Introduce
Test Environment and Performance	different types testing and significance of type of
Testing, Smoke Tests, Test Automation,	testing.(C2)
Postmortem Reports, Using Software	
Testing Effectively, Diagnosing Software	
Testing Problems	
Unit 8: Understanding Change	

(Deemed to be University under Section 3 of the UGC Act, 1956)

Why Change Fails, How to Make Change	1. Illustrate the necessity of Change management
Succeed	system – developing impact analysis document
	and its importance (C3).
Unit 9: Management and Leaders	hip
Take Responsibility, Do Everything Out	1. Understand the role of management in
in the Open, Manage the Organization,	motivating the team, finer points of managing
Manage Your Team	the team (C2)
Unit 10: Managing an Outsourced	d Project
Prevent Major Sources of Project	1. Describe the differences of managing the
Failure, Management Issues in	outsourced project, typical point of conflicts(C2)
Outsourced Projects, Collaborate with	2. Review of the project management process (C2)
the Vendor	
Unit 10: Process Improvement	
Life Without a Software Process,	1. Analyse the projects without process and
Software Process Improvement, Moving	continuous process improvements initiatives
Forward	needed for success of the project (C4)

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning					
		time (Hrs)					
Lecture	30	60					
Quiz	02	04					
Small Group Discussion (SGD)	02	02					
Self-directed learning (SDL)	-	04					
Problem Based Learning (PBL)	02	04					
Case Based Learning (CBL)	-	-					
Revision	02	-					
Assessment	06	-					
TOTAL	44	74					

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
	Viva				

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3			

Sessional Examination 1	*	*	
Sessional Examination 2	*		*
Assignment/Presentation	*	*	
End Semester Examination	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	1. "Applied Software Project Management" By Jennifer Greene,
	Andrew Stellman (O'Reilly Publications) 2005.
	2. "The Art of Project Management" By Scott Berkun (O'Reilly
	Publications) 2005.

Name of the Program:		Master of Engineering - ME (Embedded Systems)					
Course Title:		Big Data and Data Visualization					
Course Code:	BDA 614	Course Instructor:					
Academic Yea	ar: 2020-2021	Semester: First Year, Semester 1					
No of Credits	: 3	Prerequisites: Programing in Python or Java					
Synopsis:	This Course provi	des insight on					
	1. This course ai	ims to help students get started with Architectures of					
	distributed file	e systems and distributed computing.					
	2. Students learn	n probability and statistical Inference techniques.					
	3. Students lear	n machine learning algorithms required for big data					
	applications.						
	4. Students lear	n to map data attributes to graphical attributes, and					
	strategic visu	al encoding based on known properties of visual					
	perception.						
Course							
Outcomes	On successful con	npletion of this course, students will be able to					
(COs):							
CO 1:	Understand the architecture of distributed systems and distributed						
	computing.						
CO 2:	Identify the chara	acteristics of datasets and compare the trivial data and					
	big data for vario	us applications.					
	Explain concept le	earning task and hypothesis space, distinguish between					
CO 3:	general and specific hypotheses, identify the maximally specific						
	hypotheses, Des	scribe version spaces and candidate elimination					
	algorithm.						
	To solve problem	is associated with batch learning and online learning,					
CO 4:	and the big data c	characteristics such as high dimensionality, dynamically					
	growing data and	in particular scalability issues.					
CO 5:	Practical experience building and evaluating visualization systems.						

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2	*	*	*								
CO 3	*	*	*	*							
CO 4	*	*	*								
CO 5	*	*	*				*				

Course content and outcomes:					
Content	Competencies				
Unit 1: Introduction to Big Data					
Terminology – Challenges - Architectures – Distributed File Systems – Google File System – Hadoop File Systems - Hadoop Ecosystems.	 At the end of the topic student should be able to: Describe architecture of Google file system. (C2) Describe architecture of Hadoop systems. (C2) 				
Unit 2: Statistics	·				
Sampling Techniques - Data classification, Tabulation, Frequency and Graphic reporesentation - Measures of central value - Arithmetic mean, Geometric mean, Harmonic mean, Mode, Median, Quartiles, Deciles, Percentile - Measures of variation – Range, IQR, Quartile deviation, Mean deviation, standard deviation, coefficient variance, skewness, Moments & Kurtosis.	 Define True Error of a hypothesis, ε- exhausted Version Space, PAC Learning and Agnostic Learning (C1). Describe data sampling techniques. (C2) 				
Unit 3: Databases for Big Data					
Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – Big Table vs HBase introduction to NoSQL - HiveQL - Querying Data - Sorting And Aggregating, Map Reduce Scripts, Joins & Subqueries, HBase concepts- Advanced Usage, Schema Design, Advance Indexing.	 Describe is Data Science. (C2) Describe the characteristics of NoSQL. (C2) Describe the principle of Map Reduce technique. (C2) 				
Unit 4: Machine Learning for Big Data					
Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models,	1. Apply candidate-elimination algorithm to obtain most general and most specific				

validating models – cluster analysis – K-	hypotheses for the training examples.
means algorithm, Naïve Bayes –	(C3)
Memorization Methods – Linear and	2. Apply the concept of entropy and
logistic regression – supervised and	information gain to find the root node of
unsupervised learning - Issues	the decision tree (C3).
regarding classification and prediction,	3. Design a model using K-means classifier
Bayesian Classification, Classification	to predict how well products are
by backpropagation, Classification	accepted by the clients (C3).
based on concepts from association	
rule mining, Other Classification	
Methods, Classification accuracy.	
Unit 5: Stream Computing in Big Data	
Introduction - Streaming Data -	1. Understanding issues with stream
Sources – Difference between	processing in big data (C3).
Streaming Data and Static Data.	2. Describe how big data systems achieve
Overview of Large Scale Stream	high availability and low latency. (C2)
Processing Engines – Issues in Stream	3. Describe how Spark does in memory
Processing - Phases in Streaming	processing. (C3)
Analytics Architecture - Vital Attributes	
- High Availability – Low Latency –	
Horizontal Scalability-Fault Tolerance -	
Service Configuration and	
Management - Apache ZooKeeper -	
Distributed Stream Data Processing:	
Co-ordination, Partition and Merges,	
Transactions. Duplication Detection	
using Bloom Filters - Apache Spark	
Streaming Examples Choosing a storage	
system – NoSQL Storage Systems.	
Unit 6: Security in Big Data	
Privacy – Identification of Anonymous	1. Describe why Big Data Privacy is self-
People – Why Big Data Privacy is self-	regulating. (C2)
regulating? – Ethics – Ownership –	2. Describe the steps to secure big data
Ethical Guidelines – Big Data Security –	systems. (C2)
Organizational Security - Steps to	
secure big data – Classifying Data –	
Protecting – Big Data Compliance -	
HADOOP SECURITY DESIGN	
Unit 7: Data Visualization, Characteriza	tion – Data Wrangling

Combining and Merging DataSets -	1.	Understanding various formats of data.
Reshaping and Pivoting – Data		(C1)
Transformation – String Manipulation,	2.	Design programs to dynamically extract
Regular Expressions - DATA		data from web. (C4)
AGGREGATION, GROUP OPERATIONS	3.	Design programs to read data from
,TIMESERIES - GoupBy Mechanics – Data		various data sources. (C4)
Aggregation – Groupwise Operations	4.	Create visualization for time series data.
and Transformations – Pivot Tables and		(C4)
Cross Tabulations – Date and Time Date	5.	Create visualization for statistical
Type tools – Time Series Basics – Data		distributions. (C4)
Ranges, Frequencies and Shifting - WEB	6.	Create visualization for maps,
SCRAPING - Data Acquisition by Scraping		Hierarchical data and network data. (C4)
web applications –Submitting a form -		
Fetching web pages – Downloading web		
Fetching web pages – Downloading web pages through form submission – CSS		

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time			
		(Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5

Sessional Examination 1	*	*	*		
Sessional Examination 2			*	*	*
Assignment/Presentation	*	*	*	*	*
End Semester Examination	*	*	*	*	*
Laboratory examination	*	*	*	*	*

Feedback Process	•		End-Semester Feedback
Reference Material		1.	HADOOP: The definitive Guide, Tom White 4 th edition,
			O Reilly Publication
		2.	Python for Data Analysis, Wes Mc Kinney, O Reilly
			Publication.
		3.	Practical Data Science with R, Nina Zumel, John Mount,
			Manning Publications.
		4.	Machine Learning, E. Alpaydin, MIT Press, 2010

Name of the Program:		Master of Engineering - ME (Embedded Systems)				
Course Title:		High Level Digital Design				
Course Code:	EDA-601	Course Instructor:				
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2				
No of Credits	: 3	Prerequisites:				
Synopsis:	This Course provides	insight on				
	1. To understar	nd number representation and conversion between				
	different repre	esentation in digital electronic circuits.				
	2. To analyze lo	ogic processes and implement logical operations using				
	combinationa	l logic circuits.				
	3. To understand	characteristics of memory and their classification.				
	4. To understand	d concepts of sequential circuits and to analyze sequential				
	systems in ter	ms of state machines.				
	5. To understand	d concept of Programmable Devices, PLA, PAL, CPLD and				
	FPGA and imp	lement digital system using SystemVerilog.				
	6. To understand	the AMBA bus protocol and types of buses				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
CO 1:	Develop a digital logic and apply it to solve real life problems.					
CO 2:	Analyse, design and ir	nplement combinational, sequential logic circuits.				
CO 3:	Discuss different semiconductor memories.					
CO 4:	Analyse digital system design using PLD.					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*									
CO 2			*								
CO 3	*										
CO 4	*										

Course content and outcomes:					
Content	Competencies				
Unit 1: Introduction					
Review of Digital Design	At the end of the topic student should be able to:				
	1. Discuss number system in digital design. (C2)				
	2. Discuss Boolean algebra in digital design. (C2)				

	3. Optimize the Boolean expression using k-maps.
Unit 2: Combinational circuits - De	sign steps
Arithmetic Circuits - Full adder, Serial Adder, Adder/Subtractor, Ripple Carry Chain, Carry Look-Ahead adder, Carry Select Adder, ALU, Parity Generator, Comparator, Multiplier. PLA, PAL, PLD, CPLD, ROM, FPGA – Introduction	 Design a combinational circuit for a given boolean expression (C5). Discuss different types of combinational circuits like adders, multipliers and CPLD's. (C2)
Unit 3: Sequential circuits - Design	steps
Flip-flops, registers, counters.	1. Design sequential circuit using Flip-flops (C5)
Unit 4: Finite State Machines	
Introduction to FSMs, capabilities, minimization and transformation of sequential machines, Synchronous and asynchronous FSMs, Mealy and Moore machines, State assignment of synchronous sequential machines, Structure of sequential machines, Verification and testing of sequential circuits	 Discuss Mealy and Moore machines (C2) Design sequential circuit using Mealy and Moore machines (C5)
Unit 5: Verilog / System Verilog fo	r design
Verilog / System Verilog for design	1. Differentiate Verilog and System Verilog. (C4)
Unit 6: Introduction FPGA	
Introduction FPGA	2. Explain FPGA architecture. (C2)
Unit 7: Spartan III Architecture	
Spartan III Architecture	3. Discuss Spartan III Architecture. (C2)
Unit 8: Application on Digital De	sign
FIFO Design [SNUG Paper], Cordic Algorithm [IEEE Paper]	 Explain the working of FIFO (C2) Explain cordic algorithm (C2)

Floating Point Arithmetic Blocks [IEEE	3. Discuss different floating-point arithmetic
Paper]: Floating point Addition,	operations (C2)
Floating point, subtraction, Floating	
point Multiplication, Floating point	
Division	
Unit 8: AMBA Bus Specification	[ARM Specification]

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	CO 4
Sessional Examination 1	*	*		
Sessional Examination 2			*	
Assignment/Presentation		*		*
End Semester Examination	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	"An Engineering Approach to Digital Design", Flectcher
	 "SystemVerilog for design by Stuart Sutherland", Simon Davidmann, Peter Flake
	SNUG Paper [freely available]
	IEEE Paper [MU campus available]
	ARM Specification.

Name of the Program:		Master of Engineering - ME (Embedded Systems)				
Course Title:		Entrepreneurship				
Course Code	ENP-601	Course Instructor:				
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 2				
No of Credits	: 3	Prerequisites:				
Synopsis:	This course introduc	es students to the theory of entrepreneurship and its				
	practical implement	ation. It focuses on different stages related to the				
	entrepreneurial proc	ess, including business model innovation, monetization,				
	small business manag	gement as well as strategies that improve performance of				
	new business venture	s. Cantered on a mixture of theoretical exploration as well				
	as case studies of rea	I-world examples and guest lectures, students will develop				
	an understanding of s	uccesses, opportunities and risks of entrepreneurship. This				
	course has an interdis	sciplinary approach and is therefore open to students from				
	other Majors.					
Course						
Outcomes	On successful completion of this course, students will be able to:					
(COs):						
CO 1·	To impart knowledge on the basics of entrepreneurial skills and competencies to					
CO 1.	provide the participar	nts with necessary inputs for creation of new ventures.				
co 2·	To familiarize the	participants with the concept and overview of				
02.	entrepreneurship with a view to enhance entrepreneurial talent					
CO 3:	To appraise the entre	preneurial process starting with pre-venture stage				
CO 4:	To Create and exploit	innovative business ideas and market opportunities				
CO E:	To Build a mind-set	focusing on developing novel and unique approaches to				
05:	market opportunities					
	To explore new vist	as of entrepreneurship in 21st century environment to				
	generate innovative business ideas through case studies.					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2				*							
CO 3			*								
CO 4						*					
CO 5								*			
CO 6										*	

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction to Entreprene	urship
Meaning and Definition of	1. Explain the meaning of Entrepreneurship (C1)
Entrepreneurship-Employment vs	2. Discuss the theories of Entrepreneurship (C1)
Entrepreneurship, Theories of	3. Discuss the approaches to Entrepreneurship
Entrepreneurship, approach to	(C1)
entrepreneurship, Entrepreneurs VS	
Manager	
Unit 2: Entrepreneurial Traits	
Personality of an entrepreneur, Types	1. Discuss the Personality traits of
of Entrepreneurs	entrepreneurs. (C2)
Unit 3: Process of Entrepreneurshi	р
Factors affecting Entrepreneurship	1. Identify the fundamentals and responsibilities
process	of entrepreneurship (C2)
	2. Exemplify one's capabilities in relation to the
	rigors of successful ventures (C3)
	3. Identify and differentiates the different
	characteristics and competencies of an
	entrepreneurs (C2)
Unit 4: Business Start-up Process	
Idea Generation, Scanning the	1. Explain the Process of Business start up (C1)
Environment, Macro and Micro analysis	2. Develop creativity and critical thinking in
	identifying opportunities (C5)
	3. Apply innovative approaches in envisioning
	ones entrepreneurial career (C3)
Unit 5: Business Plan writing	
Points to be considered, Model	1. Identify different business models (C3)
Business plan	2. Describe different parts of a business plan(C2)
Unit 6: Case studies	
Indian and International	1. Perform self-assessment and analyse
Entrepreneurship	entrepreneurial personal traits and
	competencies (C4)
	2. Evaluate oneself and plan courses of action to
	help develop one's entrepreneurial
	characteristics and competencies. (C5)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours Student			
		time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	CO 6
Sessional Examination 1	*	*				
Sessional Examination 2			*	*		
Assignment/Presentation					*	*
End Semester Examination	*	*	*	*	*	*

Feedback Process	•	End-Semester Feedback
Reference Material	1	NVR Naidu and T. Krishna Rao, "Management and
		Entrepreneurship", IK International Publishing House Pvt. Ltd
		2008.
	2	Mohanthy Sangram Keshari, "Fundamentals of
		Entrepreneurship", PHI Publications, 2005
	3	Butler, D. (2006). Enterprise planning and development. USA:
		Elsevier Ltd. Gerber, M.E. (2008) Awakening the entrepreneur
		within. NY: Harper Collins.

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)							
Course Title:		Digital Signal Processing Lab							
Course Code:	ESD 603L	Course Instructor:							
Academic Year:	2020 - 2021	Semester: First Year, Semester 2							
No of Credits: 1	L	Prerequisites: Knowledge of Signals and Systems and Basic Knowledge of Matlab							
Synopsis:	This Course pro	vides insight on							
	1. Underst	anding of basics of Signal and Systems as pre-requisite.							
	2. Underst	anding the concepts of Fast Fourier Transforms.							
	3. Learning	g hardware implementation of systems.							
	4. Learning	4. Learning FIR and IIR Filter Designs.							
	5. Learning	5. Learning concepts of multi-rate signal processing in the form of							
	samplin	g rate conversion, structures of sampling rate converters							
	and som	and some applications of sampling rate converters							
	6. Underst	6. Understanding three optimum Weiner filters, adaptive algorithm							
	and trar	and transforming Weiner filters in to adaptive filters							
	7. Underst	7. Understanding architecture, memory management and pipelining							
	concept	concepts of TMS320C67XX processor through self-stud.							
Course	urse								
Outcomes	On successful c	ompletion of this course, students will be able to							
(COs):									
CO 1:	Use matlab to implement various DSP techniques. (C3)								
CO 2:	Experiment DFT, LTI techniques and analyse the results. (C4)								
CO 3:	Design FIR, Butt	Design FIR, Butterworth and Chebychev filters in matlab. (C5)							

Маррі	Mapping of COs to POs										
									22.44		
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*		*	*						
CO 2	*	*			*						
CO 3	*	*		*	*						

Course content and outcomes:						
Content	Competencies					
Unit 1:						
Write matlab programs to Generate	At the end of the topic student should be able to:					
waves						

Write matlab programs to Addition 1. Use Matlab to generate waves.(C3) of two sequences 2. Use Matlab for addition of two Write matlab programs to Find sequences.(C3) convolution of two sequences and 3. Compute convolution of two sequences verify the result using built-in using Matlab. (C3) function 4. Analyse the convolution usinf built in User defined Matlab function to functions. (C4) find convolution of two sequences 5. Practice convolution user defined function and verify the result in Matlab (C3) Unit 2: Write matlab programs to Find 1. Experiment DTFT of a sequence using DTFT of a sequence. Matlab (C4) Write matlab programs to Find DFT 2. Analyse the DFT of a sequence with built of a sequence and verify using builtin function (C4) in function 3. Experiment DFT using Matlab (C4) User defined Matlab function to 4. Compute convolution of two sequence find DFT and verify the result using DFT in Matlab. (C3) Write matlab programs to Find 5. Experiment time response of an LTI convolution of two sequences using system in Matlab (C4) DFT Write matlab programs to Find the time response of an LTI system defined either difference by equation or transfer function Unit 3: Write Matlab programs to find DFT 1. Analyse DIT-FFT and DIF-FFT algorithms. using (C4) DIT-FFT and DIF-FFT algorithms,

2. Design FIR filters with frequency domain specifications. (C5)

compare the result using built in

Design FIR filters with frequency domain specification (LP, HP, BP and BR) using Frequency Sampling Technique and verify frequency

function.

response.

Design FIR filter to meet required impulse response using Frequency Sampling Technique.

Unit 4:

Write Matlab programs to Design FIR filters with frequency domain specification (LP, HP, BP and BR) using different window functions and verify frequency response. Design analog Butterworth and Chebychev filters using built-in functions, transform them to digital filter and verify their frequency response (C2). Design digital Butterworth and Chebychev filters using built-in functions verify the frequency response (C2)

- 1. Design FIR filters with frequency domain specifications. (C5)
- Design analog Butterworth and Chebychev filters using built-in functions. (C5)
- 3. Design digital Butterworth and Chebychev filters using built-in functions. (C5)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning			
		time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos							
Nature of assessment	CO1	CO2	CO3				
Sessional Examination 1	*	*					
Assignment/Presentation			*				
Laboratory Examination	*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	"Digital Signal Processing", Sanjith K Mitra
	 "Digital Signal Processing", Oppenheim and Schafer
	 "Digital Signal Processing", Roman Kuc
	 "Digital Signal Processing", Proakis and Manolakis
	 "Digital Signal Processing", Rabinder and Gold
	Shaum Out-Line Series
	 "Signals and Systems", Symon Haykins
	DSP Processors and Fundamentals
	 "Multirate signal processing", Vaidyanathan
	 "Handbook of DSP", Elliot

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Device Drivers Lab				
Course Code:	ESD 604L	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 2				
No of Credits: 1	L	Prerequisites: Basic C Programming				
Synopsis:	This Course provides	insight on				
	1. Insight into	o Linux kernel programming.				
	2. Knowledge	e about the framework used in building the Linux				
	device driv	/er.				
	3. Concept o	f designing proc and ioctl needed to build a device				
	driver					
	4. Technique	s to debug kernel programs				
	5. Insight into	o designing USB drivers				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
Understand basic Linux kernel programming with an introduction						
	kernel modules					
CO 2:	Understand the concept of file operation with implementation of open,					
	close, read, write system calls					
CO 3:	Implement proc entries					
CO 4:	Implementation of ioctls					
CO 5:	Use tools to debug th	Use tools to debug the kernel modules				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*			*						
CO 2		*			*						
CO 3	*		*								
CO 4		*	*								
CO 5	*		*		*						

Course content and outcomes:						
Content	Competencies					
Unit 1:						
Introduction to Device Drivers	At the end of the topic student should be able to:					

		 Describe the broad design of device driver (C3) 	
Unit 2:			
Building & Running Modules.		 Compile and load modules using a make file (C4) 	
Unit 3:			
Character Driver.		 Explain the structure of a character driver (C3) 	
Unit 4:			
Debugging Techniques.	3. 4.	Debug modules using prink, proc and kdb (C4) Design of loctl used in building device drivers (C5)	
Unit 5:			
Concurrency and Race Condition	 Illustrate the problems associated with concurrendevice drivers (C3) Describe the problems associated with raccondition while designing a device driver (C3) 		
Unit 6:			
Advanced Character Driver Operations	1.	Execute bottom half through deferred work (C4)	
Unit 7:			
Communicating with Hardware	1.	Communicate with the devices through I/O ports (C4)	
Unit 8:			
Interrupt Handling	1.	Illustrate the concept of writing interrupt handlers (C4)	
Unit 9:			
PCI Drivers, USB Drivers	3. 4.	Structure of a USB driver (C4) Design a USB driver. (C6)	

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				

Lecture	36	72
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	-	-
Clinic	-	-
Practical	36	72
Revision	-	-
Assessment	6	-
TOTAL	78	144

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*						
Sessional Examination 2			*	*				
Assignment/Presentation		*		*	*			
Laboratory Examination	*	*	*	*	*			

Feedback Process	End-Semester Feedback
	1. Alessandro Rubini, "Linux Device Drivers", (Nutshell
	Handbook), O'Reilly Publishers, 2009.
	2. John Madieu, "Linux Device Drivers Development: Develop
	customized drivers for embedded Linux", Packt Publishing,
Reference Material	2017.
	3. Robert Love, "Linux Kernel Development", Addison Wesley,
	Third Edition, 2010.
	4. Daniel P. Bovet, Marco Cesati, "Understanding the Linux
	Kernel", O'Reilly Media, Third Edition, 2008.

5.	Wolfgang Mauerer, "Professional Linux Kernel Architecture",
	Wrox, 2008.
6.	Sreekrishnan Venkateswaran, "Essential Linux Device
	Drivers", Prentice Hall, 2008.
7.	W. Richard Stevens, Stephen A. Rago, "Advanced
	Programming in the UNIX Environment", Addison Wesley,
	Third Edition, 2013.
8.	W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, "Unix
	Network Programming, Vol1: Sockets", Pearson Education
	India, Third Edition, 2015.

Name of the Pro	ame of the Program: Master of Engineering - M			
Course Title:		Embedded Systems Lab		
Course Code:	ESD 605L	Course Instructor:		
Academic Year:	2020 - 2021	Semester: First Year, Semester 2		
		Prerequisites: Microprocessor architecture ,		
No of Credits: 1	L	Microcontroller Architecture , Assembly language		
	Γ	and Number systems		
Synopsis:	This Course provides	insight on		
	1. This course pr	ovides the knowledge of ARM Cortex M3 Processor		
	architecture.			
	2. This course pr	rovides the knowledge of Microcontroller based on		
	ARM Processo	or architecture and its Registers and Instruction sets		
	to write Asser	nbly and Embedded C Programming.		
	3. This course pr	ovides the concept of Interfacing and Programming		
	Sensors and Peripherals to Microcontrollers.			
	4. This course provides the concept of Real time operating sys			
	on Microconti	rollers.		
Course				
Outcomes	On successful comple	tion of this course, students will be able to		
(COs):				
60.1	Illustrate the features of embedded systems, architecture of ARM7,			
	Instruction set and development tools of ARM.			
	Experiment the architectural features of LPC13/17XX microcontrol			
CO 2:	interfacing peripheral devices to LPC2148.			
	Design a Real time	Embedded Systems by interfacing Sensors and		
CO 3:	Actuators and porting Real time operating systems.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*						
CO 2	*	*			*						
CO 3	*	*	*		*						

Course content and outcomes:					
Content			Competencies		
Unit 1: Introducti	on t	o LPC13/17xx M	icrocontroller		
Introduction	to	LPC13/17xx	At the end of the topic student should be able to:		
Microcontroller - H	ardv	vare, SW.			

(Deemed to be University under Section 3 of the UGC Act, 1956) RY

> 1. Summarise LPC13/17xx Microcontroller architecture and developmen t tools of ARM. (C2)

Unit 2: Interfacing LPC13/17xx	Microco	ontroller		
Interfacing With LED, LCD	Seven	Experiment interfacing LPC13/17xx		
Segment Display, UART, HEX Key	vpad.	Microcontroller with I/O devices. (C2)		
Unit 3:				
Introduction to	Free	1. Summarise FreeRTOS architecture. (C2)		
RTOS, FreeRTOS API Calls,	Task	2. Practise different API call in FreeRTOS.		
Creation, Queques, semaphore,	mutex,	(C2)		
RTOS application development.		3. Design a Real time Embedded system by		
		writing applications on top of Real time		
		operating systems (C5)		

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*	*	*					
Assignment		*	*					
Laboratory Examination	*	*	*					

Cortex-M3",
m Design: A
Viley India,
x/17xx User
ers Ltd.,

Name of the Pro	gram:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Embedded Software Design Lab				
Course Code:	ESD 606L	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 2				
		Prerequisites: Microprocessor architecture,				
No of Credits: 1	L	Microcontroller Architecture , Assembly language,				
		Object oriented concepts				
Synopsis:	This Course provides	insight on				
	1. Students learn th	ne concept of big data characteristics, batch and				
	lambda architectu	ıre.				
	2. This course introd	luces students to basics file systems in Big Data				
	3. This course helps	the student to understand the concepts of Hadoop				
	framework, Spark	framework and their internals.				
	4. This course helps	s the students to learn Map-reduce programming,				
	Spark programmi	ng.				
	5. Students learn the	e different layers with use cases demonstrations.				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
CO 1·	Experiment with UML tools and represent the model using suitable					
	diagrams.					
CO 2:	Develop applications	using the OOP concepts				
CO 3:	Develop applications	using JAVA constructs for general purpose and				
	embedded systems.					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*	*	*						
CO 2	*	*	*	*	*						
CO 3	*	*	*	*	*						

Course content and outcomes:							
Content		Competencies					
Unit 1:	Modelling object-oriented sy	stems:					

UML for modelling object-oriented systems- Class diagrams- Collaboration diagrams-Sequence diagrams- State diagrams. 1. Building models using UML tools. (C3)

Unit 2: Modelling real-time embedded systems behaviours

1. Review and understand the UML real-time profile. (C3).

Unit 3: Developing object-oriented systems in Java

Classes, interfaces, methods- Generics-Scope rules and access control. Inner classes-Functional programming constructs – lambdas-Threads, concurrency control and timers-I/O, Streams and network I/O-Security and Cryptography.

- 1. Design Classes, interfaces, methods.(C3).
- 2. Explain the Generics-Scope rules and access control.(C3).
- 3. Explain and illustrate Functional programming constructs.(C3).
- 4. Explain and lambdas.(C3).
- 5. Explain and illustrate the Threads, concurrency control and timers-I/O, Streams and network concepts.(C3).
- 6. Explain and illustrate the I/O-Security and Cryptography.(C4).

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*	*	*					
Assignment		*	*					
Laboratory Examination	*	*	*					

Feedback Process	•	End-Semester Feedback
Reference Material	1. 2. 3. 4.	UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition), Addison-Wesley Professional. 2003. The Java Programming Language. Ken Arnold, James Gosling and David Holmes. Addison-Wesley Professional; 4 edition (August 27, 2005) http://www.oracle.com/technetwork/java/embedded/resou rces/tech/compact-profiles-overview-2157132.html Realtime Specification for Java 2.0 https://java.net/projects/rtsj-2/pages/Home

Name of the Pro	ogram: Master of Engineering - ME (Embedded Syste	ms)
Course Title:	Mobile Application Development using And	roid
	Lab	
Course Code:	CSE 605L Course Instructor:	
Academic Year:	2020 - 2021Semester:First Year, Semester 2	
No of Credits: 1	1 Prerequisites: Basic Android Programming	
Synopsis:	This Course provides insight on	
	1. This course would provide fundamental knowledge about and	roid
	platform.	
	2. The course will also provide skill sets to design and dev	elop
	android applications for mobile devices.	
	3. This course will provide basic knowledge about and	roid
	application communication of data which are hosted in ren	note
	systems.	
Course		
Outcomes	On successful completion of this course, students will be able to	
(COs):		

CO 1:	Use of major building blocks in an android application						
CO 2:	Solve different issues associate with design of android applications						
CO 3:	Write android applications using various UI components and data handling using SQLiIte						
CO 4:	Experiment advanced topics on android applications						

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*								
CO 2	*	*	*	*	*						
CO 3			*		*						
CO 4		*		*							

Course content and outcomes:	
Content	Competencies
Unit 1: Part - 1: Installation of Android	l Studio
Installation of Android Studio,	At the end of the topic student should be able to:
environment setting, Project creation,	1. Identify different features in android
building a project, running a sample	studio (C1)
project	2. Explain Android manifest file (C2)
	3. Discuss DVM, DDMS, android emulator
	(C2)
	4. Discuss the issues related running and
	debugging applications (C2)
Unit 2: Introduction to Android Screen U	I Components
Implementation of android applications	1. Practice by creating android applications
using various android UI components	using different types of layouts (C3)
and layouts	2. Develop android applications
	using different types of views such as Listview,
	spinner, time picker and date picker (C3)
	3. Illustrate the use of Gallery
	and ImageSwitcher views (C2)
Unit 3: Introduction to Data Manageme	nt with SQLite
Develop android applications for data	1. Implement android applications for
handling	content provider (C3)

			2.	Apply	shared	preferences	concept	to
			androi	d UI scr	een (C3)			
			Apply	CRUD	operatio	ons to devel	op a sim	ple
			health	care ap	plication	(C3)		
Unit 4: Adva	nced topics							
Adapters,	background	threads,	1.	Practic	e to gen	erate notifica	tion objec	t in
Notifications,	Location based	services,	an and	lroid ap	plication	(C3)		
Mapping, net	work connectivity	services,	2.	Apply	Location	based service	es in andr	roid
telephony ser	vices		applica	ations (O	23)			
			3.	Demor	nstrate a	ndroid service	e life cycle	e in
			an and	lroid ap	plication	(C3)		
			4.	Unders	stand the	use of backgr	ound thre	ads
			in andı	roid app	olications	(C3)		

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with Cos	

Nature of assessment	CO 1	CO 2	CO 3	CO 4
Sessional Examination 1	*	*	*	
Assignment		*	*	
Laboratory Examination	*	*	*	

Feedback Process	End-Semester Feedback
Reference Material	 Sams Teach Yourself Android Application Development in 24 Hours, Lauren Darcey and Shane Conder, ISBN-10: 0321673352 ISBN-13: 978-0321673350 Edition: 1 Hello, Android: Introducing Google's Mobile Development Platform, Ed Burnette, ISBN- 10: 1934356565 ISBN-13: 978-1934356562 Edition: Third Edition Android Application Development: Programming, Rick Rogers and John Lombardo, ISBN- 10: 0596521472 ISBN-13: 978-0596521479 Edition: 1 Professional Android 2 Application Development (Wrox Programmer to Programmer), Reto Meier, ISBN-10: 0470565527 ISBN-13: 978-0470565520 Edition:

Name of the	lame of the Program: Master of Engineering - ME (Embedded System		
Course Title:		Web Application Development Lab	
Course Code	: CSE-611L	Course Instructor:	
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2	
No of Credits	: 1	Prerequisites: Basic C , Fundamentals of Object	
		Oriented Programming	
Synopsis:	This Course provides	insight on	
	des an insight into web applications.		
2. This course prov		vides knowledge about databases and their use in	
	developing web applications.		
	3. This course introduces ASP.NET technology and its use to build v		
	applications.		
	4. This course provides knowledge about Client-Server Architecture.		
	5. This course provides knowledge about HTML, CSS, JavaScript		
	6. This course provid	des knowledge about Web Service.	

Course	
Outcomes	On successful completion of this course, students will be able to
(COs):	
CO 1:	Construct a database and normalize the database.
CO 2:	Manipulate the appropriate types of data to be stored.
CO 3:	Develop a Web application using ASP.NET.
CO 4:	Construct a web page using HTML and CSS.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*	*		*						
CO 2		*	*		*						
CO 3		*	*		*						
CO 4		*	*		*						

Course content and outcomes:				
Content	Competencies			
Unit 1: Database Concepts				
Introduction to Transact SQL, Database	At the end of the topic student should be able to:			
optimization Techniques	1. Design and develop a database (C5)			
(Normalization), Creating database,	2. Create stored procedures, Triggers to			
Queries, sub queries, Joins, Stored	manipulate data in database (C5).			
Procedures, Triggers				
Tools: SQL server 2008 R2				
Unit 2: Programming				
ASP.NET: Introduction to ASP.NET, Clint	1. Use HTML to create webpages (C3)			
server and web application design of	2. Use CSS and JavaScript on web pages (C3)			
presentation, business logic	3. Develop web applications using ASP.Net (C3)			
	4. Develop forms using WIN forms (C3).			

and storage functionality. WIN form	
and WEB form Designs using ASP.NET.	
Silverlight, Windows Client,	
HTMI basics CSS AIAX Java Scripts	
Styling with Themes	
Componentization (Code behind Data	
componentization (code benind, Data	
Layers, User Controls), Roles and	
Profiles	
Tool: Visual Studio 2010	
Unit 3: Web Services	
The life Cycle of a Web Service,	1. Analyse Web services (C4).
Structure of Web Service, Creating a	2. Write SOAP, Data Contracts (C3).
Web Service, SOAP, Data Contracts,	
Binding, Security, Discovery,	
Publishing, WSDL	

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

BYLI	(Deemed to be University under Section 3 of the UGC Act, 1956)	
------	--	--

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4			
Sessional Examination 1	*	*					
Sessional Examination 2			*	*			
Assignment/Presentation	*	*	*	*			
Laboratory examination	*	*	*	*			

Feedback Process	End-Semester Feedback						
Reference Material	• Beginning ASP.NET 4.0 with C# byChris Hart, John Kauffman, David						
	Sussman, Chris Ullman						
	 Professional C# - Simon Robinson, Christian Nagel- Wiley 						
	Publishing, Inc.						

Name of the	Program:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Multicore Program Optimization Lab				
Course Code:	CSE 612 L	Course Instructor:				
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 2				
No of Credits	: 1	Prerequisites: Basic Programming – preferably C,				
		concepts of thread creation				
Synopsis:	This Course provides insight on					
	1. Students able to understand various software tools, usages.					
	2. Able to understand difference between single core and m					
	systems execution environment					
	3. Students will	understand apple appropriate pragmas and its				
	implementatio	on				

	4. Develop the optimised software model based on application					
	5. Design and illustrate the performances of parallel threads and under					
	the mutlicor environments.					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Understand knowledge of usage of software's					
CO 2:	Create multicore thread environmental based scenario with openmp pragmas					
CO 3:	Construction of circuit models based on application, tools					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2			*		*						
CO 3			*		*						

Course content and outcomes:					
Content	Competencies				
Unit 1: Basic C programming					
Understanding of basic c programming for large set of data and understanding time consumtion	 At the end of the topic student should be able to: C programs: WAP for matrix multiplication of order 1000x1000 (C3) WAP for function for random number generation and calculate the time need for execution on single core and dual core systems (C3). WAP for multiplying multiple arrays by a constant by even indices and odd indices 				
Unit 2: Introduction OPENMP pragmas					
Understanding various openmp pragma's, its syntax's	 Understand the syntax's of openmp constructs, clauses, functions(c2,c3) 				
Unit 3: Introduction of THREADS AND P	RAGRMA'S				
Writing code using multiple threads using openmp pragma's and comparisons of time consumptions	 Design and implement multithreaded programs using openmp constructs, clauses, functions (C6) 				

with	single	and	multicore	2.	Design and implement multithreaded program
with environ	single ments.	and	multicore	2. 3.	Design and implement multithreaded program that finds th repetition of a number within a nxn matrix. Initialisation of matrix should be done within the parallel region, but by one thread(c5) Design and implement multithreaded program that finds th repetition of a number within a nxn matrix. Initialisation of matrix should be done within the parallel region, but by one thread. The number to be searched shuld be input by user before entering the parallel region (c6) Design and implement multithreaded program to compute the sum of two nxn matrices. The initialisation of matrix should be done within the parallel region, but by only thread.
Lipit 4.	undorsta	nding the	ontimicatio		
	unuersta	inding the			
Underst	anding the	various t	ools which		1. Running the sample code for application of
are available from various industry and			dustry and		Benchmark, Optimizing Compilers,
internet	sources				Profilers (c4) Performance Tools, Code
					Coverage Tools, Sampling vs
					Instrumentation (c6)

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				

TOTAL	48	-

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*		
Sessional Examination 2			*	
Assignment/Presentation			*	
Laboratory examination	*	*	*	

Feedback Process	End-Semester Feedback	
Reference Material	1. The Software Optimization Cookbook High Performance Recipes	
	for IA-32 Platforms, Richard Gerber, Aart J. C Bik, Kevin B. Smith,	
	and Xinmin Tian, 2nd Edition, Intel Press	
	2. JComputer Architecture: A Quantitative Approach, Morgan	
	Kaufmann Publishers,. L. Hennesey and D. A. Patterson. 3rd	
	Edition	
	3. Parallel Computer Architecture: A Hardware/Software Approach.	
	Morgan Kaufmann Publishers, D. E. Culler, J. P. Singh, with A.	
	Gupta, 2nd Edition	
	4. INTEL COOK BOOK and Manuals, IEEE Papers	
	5. openmp reference guide version 4.0/4.5	
	6. Internet sources	

Name of the	Program:	Master of Engineering - ME (Embedded Systems)		
Course Title:		IT Project Management Lab		
Course Code:	CSE-631L	Course Instructor:		
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 2		
No of Credits	: 1	Prerequisites: Familiarity in developing application		
		using any high level language		
Synopsis:	This Course provides insight on			
	1. The concept	of software development process and project		
	management			
	2. Illustrates the	difference between a lab assignment and group project		
	3. Help the stu	udents to understand the finer points of Project		
	management			
	4. Bring awarene	ess about the processes, tools and techniques involved		
	in the field of IT p	the field of IT project management.		

Г

Course	
Outcomes	On successful completion of this course, students will be able to
(COs):	
CO 1:	Practice the project development through project planning.
CO 2:	Understand the finer points of Project management.
60 3:	Bring awareness about the processes, tools and techniques involved in the
CU 3:	field of IT project management.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1			*	*							
CO 2					*				*		
CO 3			*		*						

Course content and outcomes:						
Content	Competencies					
Unit 1: Software Project Planning						
Understand the Project Needs, Create	At the end of the topic student should be able to:					
the Project Plan, Diagnosing Project	1. Discussion on tools needed for project					
Planning Problems.	management (C3)					
Unit 2: Estimation						
Elements of a Successful Estimate,	1. Download and demonstrate the tools					
Wideband Delphi Estimation, Other	typically used for UML design. (C3)					
Estimation Techniques, Diagnosing						
Estimation Problems.						
Unit 3: Project Schedules						
Building the Project Schedule,	1. Design the application through the UML					
Managing Multiple Projects, Use the	tool practiced (C4)					
Schedule to Manage	2. Develop the team with different roles					
Commitments, Diagnosing Scheduling	assigned to each member – namely project					
Problems.	manager, developer, tester and assign					
	appropriate tasks (C4)					
Unit 4: Reviews						
Inspections, Deskchecks,	1. Develop basic set of programs and to					
Walkthroughs, Code Reviews, Pair	illustrate the unit tests (C2)					
Programming, Use Inspections to						

Manage Commitments, Diagnosing	
Review Problems.	
Unit 5: Software Requirements	
Requirements Elicitation, Use Cases,	1. Field visit to develop and practice the
Software Requirements Specification,	requirement elicitation (C3)
Change Control, Introduce Software	
Requirements Carefully, Diagnosing	
Software Requirements Problems	
Unit 6: Design and Programming	
Review the Design, Version Control	1. Illustrate the key steps in design and
with Subversion, Refactoring, Unit	programming phase. Version control and unit
Testing, Use Automation, Be Careful	testing significance (C3)
with Existing Projects, Diagnosing	2. Review of various artefacts generated by
Design and Programming Problems	project and revise the project management
	methodology to the team (C5)
Unit 7: Software Testing	
Test Plans and Test Cases, Test	1. Inter team testing set up based on
Execution, Defect Tracking and Triage,	requirement document(C5)
Test Environment and Performance	
Testing, Smoke Tests, Test	
Automation, Postmortem Reports,	
Using Software Testing Effectively,	
Diagnosing Software Testing Problems	
Unit 8: Understanding Change	
Why Change Fails, How to Make	1. Illustrate the necessity of Change
Change Succeed	management system – SVN hands on (C3).
Unit 9: Management and Leaders	hip
Take Responsibility, Do Everything Out	1. Discussion on the topic with the help of
in the Open, Manage the Organization,	case study (C3)
Manage Your Team	
Unit 10: Managing an Outsource	d Project
Prevent Major Sources of Project	
Failure, Management Issues in	2. Discussion on the topic with the help of
Outsourced Projects, Collaborate with	case study (C3)
the Vendor	
Unit 11: Process Improvement	

Life Witho	out a Soft	ware Process,	1.	Post-mortem	report generation	of	
Software	Process	Improvement,	res	spective project	by each team - review	ı of	
Moving Forward			the	the report and suggest areas of improvement			
		(C4	1)				

Learning strategies, contact hours and student learning time								
Learning strategy	Contact hours	Student learning						
		time (Hrs)						
Lecture	12	-						
Seminar	-	-						
Quiz	-	-						
Small Group Discussion (SGD)	-	-						
Self-directed learning (SDL)	-	-						
Problem Based Learning (PBL)	-	-						
Case Based Learning (CBL)	03	-						
Clinic	-	-						
Practical	24	-						
Revision	03	-						
Assessment	06	-						
TOTAL	48	-						

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*	*						
Sessional Examination 2			*					
Assignment/Presentation	*							
Laboratory Examination	*	*	*					

Feedback Process	End-Semester Feedback						
Reference Material	1. "Applied Software Project Management" By Jennifer						
	Greene, Andrew Stellman (O'Reilly Publications) 2005.						
	2. "The Art of Project Management" By Scott Berkun (O'Reilly						
	Publications) 2005.						

Name of the	Program:	Master of Engineering - ME (Embedded Systems)				
Course Title:		Big Data and Data Visualization Lab				
Course Code: BDA 614L		Course Instructor:				
Academic Year: 2020-2021		Semester: First year, Second semester				
No of Credits: 1		Prerequisites: Programming in Python, Java				
Synopsis:	This Course provides	insight on				
	1. Students learn to	handle big data in distributed computing architecture.				
	2. Installation and w	orking on Hadoop and ecosystem				
	3. Build machine lea	rning Models				
	4. Processing of data	a stream				
	5. Choose proper da	ta visualization techniques				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
CO 1:	Handle big data using	Hadoop and its ecosystems.				

CO 2:	Building machine learning algorithm using Spark.
CO 3:	Data Cleaning and Data Visualization.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*	*					
CO 2	*	*	*	*	*	*			*	*	
CO 3	*	*	*	*	*	*		*			

Course content and outcomes:						
Content	Competencies					
Unit 1: Big Data						
Introduction to Hadoop.	At the end of the topic student should be able to:					
Data Analysis using Hadoop ecosystems	 Installation of Hadoop and Spark distributed systems. (C4) 					
	2. Reading and writing data into HDFS (C2).					
	3. Develop scripts to transfer structured data					
	A Develop script to query the data from HDES					
	using Hive. (C4)					
Unit 2: Machine Learning						
Machine Learning in Big Data.	6. Design a model using K-means classifier to					
Stream processing in Big Data.	predict how well products are accepted by the clients (C4).					
	 Develop applications using Stream processing in big data (C4). 					
Unit 3: Data Visualization						
Video encoding and processing	1. Design programs to dynamically extract data					
techniques.	from web. (C4)					
	2. Develop visualization application for time					
	series data. (C4)					
	3. Develop visualization application for statistical distributions. (C4)					
	4. Develop visualization application for maps,					
	Hierarchical data and network data. (C4)					

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3		
Sessional Examination 1	*	*			
Sessional Examination 2		*	*		
Assignment/Presentation	*	*	*		
End Semester Examination	*	*	*		
Laboratory Examination	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	1. T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
	Learning: Data Mining, Inference and Prediction. Springer, 2nd
	Edition, 2009
	2. Machine Learning for Big Data, Jason Bell, Wiley Big Data Series

3.	Big Data: Principles and best practices of scalable real-time data
	systems - Nathan Marz and James Warren. Manning Publisher.
4.	Hadoop: The Definitive Guide: Storage and Analysis at Internet
	Scale – Tom White, O'Reilly Publication 4 th Edition.
5.	Spark: The Definitive Guide: Big Data Processing Made Simple –
	Bill Chambers, Matei Zaharia, O'Reilly Publication 1 st Edition

Name of the	Program:	Master of Engineering - ME (Embedded Systems)		
Course Title:		High Level Digital Design Lab		
Course Code:	EDA-601L	Course Instructor:		
Academic Ye	ar: 2020-2021	Semester: First Year, Semester 1		
No of Credits	: 1	Prerequisites: Boolean Logic		
Synopsis:	This Course provides insight on			
	1. To analyze lo	ogic processes and implement logical operations using		
	combinationa	l logic circuits and implement digital system using		
	SystemVerilog	Į.		
	2. To understand	d characteristics of memory and their classification and		
	implement dig	gital system using SystemVerilog.		
	3. To understand concepts of sequential circuits and to analyze sequences			
	systems in ter	ms of state machines and implement digital system using		
	SystemVerilog	J.		

	4. To understand concept of Programmable Devices, PLA, PAL, CPLD and				
	FPGA and implement digital system using SystemVerilog.				
	5. To understand the AMBA bus protocol and types of buses and implement				
	digital system using SystemVerilog				
Course					
Outcomes	On successful completion of this course, students will be able to				
(COs):					
CO 1:	Design and implement combinational circuits.				
CO 2:	Design and implement sequential logic circuits.				
CO 3:	Design and implement AMBA Bus protocol.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1			*		*						
CO 2			*		*						
CO 3			*		*						

Course content and outcomes:					
Content		Competencies			
Unit 1:	Introduction				
		At the end of the topic student should be able to:			
		1. Implement boolean expression using dataflow			
		modelling. (C1)			
Unit 2:	Combinational circuits - Des	sign steps			
		1. Experiment combinational circuits like adders,			
		multipliers and CPLD's using SystemVerilog. (C4)			
Unit 3:	Sequential circuits - Design steps				
		1. Experiment sequential circuit using			
		SystemVerilog (C4)			
Unit 4:	Finite State Machines				
		1. Experiment Mealy and Moore machines using			
		SystemVerilog (C4)			
Unit 5:	Verilog / System Verilog for	r design			
		1. Differentiate Verilog and System Verilog. (C4)			
Unit 6:	Introduction FPGA				

		1.	Experiment combinational and sequential
			circuits on Vertex-5 FPGA.
Unit 7:	Spartan III Architecture		
		1.	Experiment combinational and sequential
			circuits on Spartan III. (C4)
Unit 8:	Application on Digital Des	ign	
		1.	Experiment FIFO using SystemVerilog (C4)
Unit 8:	AMBA Bus Specification	AR	M Specification]
		1.	Experiment AHB and APB using SystemVerilog (C4)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3		

Sessional Examination 1	*	*	
Sessional Examination 2		*	
Assignment/Presentation			*
Laboratory Examination	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	"An Engineering Approach to Digital Design", Flectcher
	• "SystemVerilog for design by Stuart Sutherland", Simon Davidmann, Peter Flake
	SNUG Paper [freely available]
	IEEE Paper [MU campus available]
	ARM Specification.

Name of the	Program:	Master of Engineering - ME (Embedded Systems)		
Course Title:		Entrepreneurship Lab		
Course Code:	ENP-601L	Course Instructor:		
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 2		
No of Credits	: 1	Prerequisites: -		
Synopsis:	This Course provides	insight on		
	This course introduce	es students to the theory of entrepreneurship and its		
	practical implementa	ation. It focuses on different stages related to the		
	entrepreneurial process, including business model innovation, monetization,			
	small business management as well as strategies that improve performance			
	of new business ventures. Cantered on a mixture of theoretical exploration as			
	well as case studies of real-world examples and guest lectures, students wil			
	develop an unders	tanding of successes, opportunities and risks of		

	entrepreneurship. This course has an interdisciplinary approach and is						
	therefore open to students from other Majors.						
Course							
Outcomes	On successful completion of this course, students will be able to						
(COs):							
CO 1:	Understand the concept of entrepreneurship						
co 2:	To appraise the entrepreneurial process starting with pre-venture stage						
through group discussion							
	To Build a mind-set focusing on developing novel and unique approaches to						
CO 3:	market opportunities by considering case studies and understand the						
	complete flow of entrepreneurship						

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*					*		*			
CO 2						*					
CO 3								*		*	

Course content and outcomes:					
Content	Competencies				
Unit 1: Introduction to Entrepreneurs	hip				
Meaning and Definition of	1. Discuss the theories of Entrepreneurship				
Entrepreneurship-Employment vs	(C1)				
Entrepreneurship, Theories of	2. Discuss the approaches to				
Entrepreneurship, approach to	Entrepreneurship (C1)				
entrepreneurship, Entrepreneurs VS					
Manager					
Unit 2: Process of Entrepreneurship					
Factors affecting Entrepreneurship	1. Exemplify one's capabilities in relation to				
process	the rigors of successful ventures (C3)				
	2. Identify and differentiates the different				
	characteristics and competencies of an				
	entrepreneurs (C2)				
Unit 3: Business Plan writing					
Points to be considered, Model	1. Identify different business models (C3)				
Business plan	Describe different parts of a business plan(C2)				

Unit 4:	Case studies						
Indian	and	International	1.	Perform self	-assessment	and	analyse
Entrepr	eneurship			entrepreneuri	al persona	l trai	ts and
				competencies	(C4)		
			2.	Evaluate ones	elf and plan c	ourses	of action
				to help deve	elop one's o	entrepi	reneurial
				characteristics	and compet	encies.	(C5)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3			
Sessional Examination 1	*	*				
Sessional Examination 2			*			
Assignment/Presentation		*	*			
Laboratory Examination	*	*	*			

Feedback Process	•		End-Semester Feedback
Reference Material		1.	NVR Naidu and T. Krishna Rao, "Management and
			Entrepreneurship", IK International Publishing House Pvt. Ltd
			2008.
		2.	Mohanthy Sangram Keshari, "Fundamentals of
			Entrepreneurship", PHI Publications, 2005
		З.	Butler, D. (2006). Enterprise planning and development. USA:
			Elsevier Ltd. Gerber, M.E. (2008) Awakening the entrepreneur
			within. NY: Harper Collins.

Name of the	Program:	Master of Engineering - ME (Embedded Systems)		
Course Title:		Mini Project - 2		
Course Code	ESD 696	Course Instructor:		
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 2		
No of Credits: 4		Prerequisites: Any programming language and circuit		
		basics		
Synopsis:	Students are expected	d to select a problem in the area of their interest and the		
	area of their specialization that would require an implementation in hardwar			
	/ software or both in a semester			
Course				
Outcomes On successful completion of this course, students will be able to				
(COs):				

CO 1:	Apply the objectives of the project work and provide an adequate background
	with a detailed literature survey
<u> </u>	Breakdown the project into sub blocks with sufficient details to allow the
CO 2:	work to be reproduced by an independent researcher
CO 3:	Compose hardware/software design, algorithms, flowchart, methodology,
	and block diagram
CO 4:	Evaluate the results
CO 5:	Summarize the work carried out

Mappi	ng of C	Os to P	Os								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	
CO 4						*					*
CO 5							*				

Course content and outcomes:	
Content	Competencies
Phase 1	
Problem identification, synopsis	At the end of the topic student should be able to:
submission, status submission, mid	1. Identify the problem/specification (C1)
evaluation.	2. Discuss the project (C2)
	3. Prepare the outline (C3)
	4. Describe the status of the project (C2)
	5. Prepare a mid-term project presentation
	report (C3)
	6. Prepare and present mid-term project
	presentation slides (C3, C5)
	7. Develop project implementation in
	hardware/software or both in chosen platform
	(C5)
Phase 2	
Status submission, final evaluation.	1. Prepare the progress report (C3)
	2. Prepare the final project presentation report
	(C3)
	3. Prepare and present final project presentation
	slides (C3, C5)

4.	Modify	and	Develop	implementation	in
	hardwar	e/soft	ware or bo	th in chosen platfo	rm
	(C3 <i>,</i> C5)				
5.	Justify tl	he met	thods used	and obtained resu	ults
	(C6)				

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	-	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	48	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	-	-		
Clinic	-	-		
Practical	-	-		
Revision	-	-		
Assessment	03	-		
TOTAL	51	09		

Assessment Methods:				
Formative:	Summative:			
Project Problem Selection	Mid-Term Presentation			
Synopsys review	Second status review			
First status review	Demo & Final Presentation			

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Mid Presentation	*	*			
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback	
Reference Material	Particular to the chosen project	

Name of the Program:		Master of Engineering - ME (Embedded Systems)		
Course Title:		Seminar - 2		
Course Code	: ESD 698	Course Instructor:		
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 2		
No of Credits: 1		Prerequisites: Communication Skill		
Synopsis:	1. To select, search and learn technical literature.			
2. To Identify a curre		ent and relevant research topic.		
3. To prepare a topic		c and deliver a presentation.		
4. To develop the sk		ill to write a technical report.		
	5. Develop ability to	work in groups to review and modify technical content.		

Course	
Outcomes	On successful completion of this course, students will be able to
(COs):	
CO 1:	Show competence in identifying relevant information, defining and explaining
CO 1:	topics under discussion.
60 3	Show competence in working with a methodology, structuring their oral work,
CO 2:	and synthesizing information.
<u> </u>	Use appropriate registers and vocabulary, and will demonstrate command of
CO 3:	voice modulation, voice projection, and pacing.
CO 4:	Demonstrate that they have paid close attention to what others say and can
CO 4:	respond constructively.
	Develop persuasive speech, present information in a compelling, well-
CO 5:	structured, and logical sequence, respond respectfully to opposing ideas,
	show depth of knowledge of complex subjects, and develop their ability to
	synthesize, evaluate and reflect on information.

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*							*	*		*
CO 2	*							*	*		*
CO 3	*							*	*		*
CO 4	*							*	*		*
CO5:	*							*	*		*

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	-	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	14	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	-	-				
Clinic	-	-				
Practical	-	-				
Revision	-	-				
Assessment	-	-				
TOTAL	14	-				

Assessment Methods:					
Formative:	Summative:				
Seminar Topic Selection					
Synopsys review					
PPT Review					

Mapping of assessment with Cos							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Presentation	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen Seminar

Name of the	Program:	Master of Engineering - ME (Embedded Systems)			
Course Title:		Project Work			
Course Code:	ESD 696	Course Instructor:			
Academic Ye	ar: 2020 - 2021	Semester: Second Year, Semester 3, 4			
No of Credits	: 25	Prerequisites: SDLC, Communication Skills, technical			
		skills.			
Synopsis:	• The project work aims to challenge analytical, creative ability and to				
	allow student	s to synthesize, apply the expertise and insight learned			
	in the core dis	cipline.			

	• Students build self-confidence, demonstrate independence, and							
	develop professionalism on successfully completion of the project.							
Course								
Outcomes	On successful completion of this course, students will be able to							
(COs):								
CO 1:	To be acquainted with working environment and processes that in place at							
CO 1.	the relevant Industries.							
CO 2:	To familiarize the challenges as relevant professionals.							
CO 3:	Review the literature and develop solutions for real time onboard projects.							
CO 4:	Write technical report and deliver presentation.							
CO 5:	Apply engineering and management principles to achieve project goal.							

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1						*	*	*	*	*	*
CO 2					*						
CO 3	*	*	*	*	*						
CO 4	*	*	*	*							
CO5:						*	*	*	*	*	*

Course content and outcomes:							
Content	Competencies						
Phase 1:							
Problem identification, synopsis	At the end of the topic student should be able to:						
submission, status submission, mid	1. Identify the problem/specification (C1)						
evaluation.	2. Discuss the project (C2)						
	3. Prepare the outline (C3)						
	4. Prepare a mid-term project presentation						
	report (C3)						
	5. Prepare and present mid-term project						
	presentation slides (C3, C5)						
	6. Develop project implementation in						
	hardware/software or both in chosen platform						
	(C5)						
Phase 2							
Status submission, final evaluation.	1. Prepare the progress report (C3)						
	2. Prepare the final project presentation report						
	(C3)						

3.	Prepare and present final project presentation
	slides (C3, C5)
4.	Modify and Develop implementation in
	hardware/software or both in chosen platform
	(C3, C5)
5.	Justify the methods used and obtained results
	(C6)

Learning strategies, contact hours and student learning time					
		Student learning			
Learning strategy	Contact hours	time (Hrs)			
Lecture	-	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	14	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	-	-			
Clinic	-	-			
Practical	-	-			
Revision	-	-			
Assessment	-	-			
TOTAL	14	-			

Assessment Methods:					
Formative:	Summative:				
Project Problem Selection	Mid-Term Presentation				
Synopsys review	Second status review				
First status review	Demo & Final Presentation				

Mapping of assessment with Cos											
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5						
Mid Presentation	*	*									
Presentation	*	*	*	*	*						

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING

(Deemed to be University under Section 3 of the UGC Act, 1956)

SI.No.	Course Code	Course Name	Credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
1	CSE 601	Data Structures and Algorithms	3	*	*		*		*					
2	CSE 602	Real Time Operating Systems	3	*	*	*	*							
3	ESD 601	Advanced Computer Architecture	3	*	*	*	*	*						
4	ESD 602	Microcontrollers and its Applications	3	*	*	*		*						
5	CSE 610	Computer Networks	3	*	*	*								
6	CSE 604	Database Programming in Java	3	*	*	*	*	*						
7	IOT 607	Internet of Things	3	*	*	*		*						
8	CSE 601L	Data Structures and Algorithms Lab	1		*	*		*			*			
9	CSE 602L	Real Time Operating Systems Lab	1	*	*	*		*						
10	ESD 601L	Advanced Computer Architecture Lab	1		*	*	*	*						
11	ESD 602L	Microcontrollers and its Applications Lab	1	*	*	*		*						
12	CSE 610L	Computer Networks Lab	1	*	*	*								
13	CSE 604L	Database Programming in Java Lab	1		*	*		*						
14	IOT 607L	Internet of Things Lab	1	*	*	*	*	*						
15	ESD 695	Mini Project - 1	4				*	*	*	*	*		*	*

16	ESD 697	Seminar - 1	1	*							*	*		*
17	ESD 603	Digital Signal Processing	3	*	*	*	*	*						
18	ESD 604	Device Drivers	3	*	*	*		*						
19	ESD 605	Embedded Systems	3	*	*	*		*						
20	ESD 606	Embedded Software Design	3											
21	CSE 605	Mobile Application Development using Android	3	*	*	*	*	*						
22	CSE 611	Web Application Development	3	*	*	*	*	*						
23	CSE 612	Multicore Program Optimization	3	*	*	*	*	*						
24	CSE 631	IT Project Management	3	*	*	*								
25	BDA 614	Big Data and Data Visualization	3	*	*	*	*			*				
26	EDA 601	High Level Digital Design	3	*	*	*								
27	ENP 601	Entrepreneurship	3	*		*	*		*		*		*	
28	ESD 603L	Digital Signal Processing Lab	1	*	*		*	*						
29	ESD 604L	Device Drivers Lab	1	*	*	*		*						
30	ESD 605L	Embedded Systems Lab	1	*	*	*		*						

31	ESD 606L	Embedded Software Design Lab	1											
32	CSE 605L	Mobile Application Development using Android Lab	*	*	*	*	*							
33	CSE 611L	Web Application Development Lab		*	*		*							
34	CSE 612L	Multicore Program Optimization Lab	*	*	*		*							
35	CSE 631L	IT Project Management Lab			*	*	*				*			
36	BDA 614L	Big Data and Data Visualization Lab	*	*	*	*	*	*		*	*	*		
37	EDA 601L	High Level Digital Design Lab			*		*							
38	ENP 601L	Entrepreneurship Lab	*					*		*		*		
39	ESD 696	Mini Project - 2	4				*	*	*	*	*		*	*
40	ESD 698	Seminar - 2	1	*							*	*		*
41	ESD 799	Project Work	25	*.	*	*	*	*	*	*	*	*	*	*

