

Manipal School of Information Sciences (MSIS)

Manipal Academy of Higher Education, Manipal

Outcome Based Education (OBE) Framework

Two Year full time Postgraduate Program

Master of Engineering - ME (Cloud Computing)

TABLE OF CONTENTS

Contents

NATURE AND EXTENT OF THE PROGRAM:	3
PROGRAM EDUCATION OBJECTIVE (PEO):	3
GRADUATE ATTRIBUTES:	5
QUALIFICATIONS DESCRIPTORS	7
PROGRAM OUTCOMES:	9
COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS)	11
PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING1	41

NATURE AND EXTENT OF THE PROGRAM

An engineering graduate skillset requirement is changing with invent of the new technologies. In particular, the impact of Cloud Computing provide a high employability in the industry. Objectives of this program is to provide hands on experience to work, manage and deployment of cloud infrastructure based on best practices and protocols, understanding security issues in cloud, handling of Big data on cloud and to provide end to end cloud business solutions..

ME (Cloud Computing) Program is a comprehensive two-year postgraduate program, which aims to provide hands-on experience to prepare industry-ready Cloud Computing professionals. Foundational IT courses included to learn the basic skillsets required for any IT industry domain. Program covers Cloud architecture, Virtualization techniques, Cloud security and Networks which will lay good platform for Cloud engineers. Cloud based application development is included in the program to meet the requirements of application development for web/Internet which is an emerging technology. Big data is a trending technology and majority of Big Data applications are cloud based. So Big data analytics, Visualization and Machine learning are also part of the curriculum. Imparting skills for engineers to be street smart and motivate them to be Entrepreneurs to start a Cloud Enterprises.

ME (Cloud Computing) postgraduate degree would welcome graduates from any discipline with 50% mark in qualifying exam. Students after successfully completing the program will get career opportunities as a Cloud architect, full stack developer, Cloud engineer, cloud system administrator, cloud network engineer.

PROGRAM EDUCATION OBJECTIVE (PEO)

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for

ME (Cloud Computing) program are as follows.

PEO No	Education Objective
PEO 1	Graduates are employed in the field of Cloud Architect, Security Analyst, Software Application Engineer, Consultant, Administrator and Full Stack Developer.
PEO 2	Introduce state of art technologies in the area of Cloud Computing and inculcate ethical practices to make industry ready professional or pursue their interest in research /Higher Education.
PEO 3	Engineers who have leadership qualities and inclination, become entrepreneurs.

GRADUATE ATTRIBUTES

S No.	Attribute	Description
1	Scholarship of Knowledge	Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.
2	Critical Thinking	Analyse complex engineering problems critically, apply independent judgement for synthesising information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.
3	Problem Solving	Think laterally and originally, conceptualise and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.
4	Research Skill	Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyse and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.
5	Usage of modern tools	Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.
6	Collaborative and Multidisciplinary work	Possess knowledge and understanding of group dynamics, recognise opportunities and contribute positively to collaborative- multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open- mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.
7	Project Management and Finance	Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors.

8	Communication	Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.
9	Life-long Learning	Recognise the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
10	Ethical Practices and Social Responsibility	Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.
11	Independent and Reflective Learning	Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback.

QUALIFICATIONS DESCRIPTORS

- 1. Demonstrate
 - (i) A systematic, extensive and coherent knowledge and understanding of Cloud Computing and its applications, and links to related Computing discipline, including a critical understanding of the established theories, principles and concepts, and of a number of advanced and emerging issues in the field of Cloud Computing
 - (ii) Procedural knowledge that creates different types of professionals related to the Cloud Computing industry, including research and development, teaching, Entrepreneurship, government and public service.
 - (iii) Professional and communication skills in the domain of Cloud Architect /Cloud Engineer, Cloud Security Engineer, Cloud Developer, DevOps Architect, data analytics, including a critical understanding of the latest developments, and an ability to use established techniques in the domain of Cloud Computing.
- Demonstrate comprehensive knowledge about materials, including current research, scholarly, and/or professional literature, relating to essential and advanced learning areas pertaining to the Cloud Computing field of study, and techniques and skills required for identifying problems and issues related.
- Demonstrate skills in Enabling and Foundation technologies like Virtualization, Network, Service Oriented Architecture, Webservers for Evolution of Cloud Computing
- 4. Methodologies as appropriate to the subject(s) for formulating evidence-based solutions and arguments in Cloud Computing Domain
- 5. Use knowledge, understanding and skills for critical assessment of a wide range of ideas and complex problems and issues relating to the field of Cloud Computing
- Communicate the results of studies undertaken in Architecture of Cloud, Security, Automation, Orchestration, Virtualization technologies using the main concepts, constructs and techniques of the Cloud Computing
- 7. Address one's own learning needs relating to current and emerging areas of study, making use of research, development and professional materials as appropriate, including those related to new frontiers of knowledge.

8. Apply one's disciplinary knowledge and transferable skills to new/unfamiliar contexts and to identify and analyse problems and issues and seek solutions to real-life problems.

PROGRAM OUTCOMES

After successful completion of Master of Engineering - ME (Cloud Computing), Students will be able to:

PO No	Attribute	Competency
PO 1	Scholarship of Knowledge	Acquire in-depth knowledge of Cloud Computing domain, with an ability to discriminate, evaluate, analyze, synthesize the existing and new knowledge, and integration of the same for enhancement of knowledge.
PO 2	Critical Thinking	Analyze complex Cloud Computing Eco System critically, apply independent judgement for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.
PO 3	Problem Solving	Think laterally and originally, conceptualize and solve Cloud Computing problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.
PO 4	Research Skill	Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.
PO 5	Usage of modern tools	Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.
PO 6	Collaborative and Multidisciplinary work	Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative- multidisciplinary scientific research, demonstrate a capacity for self- management and teamwork, decision-making based on open- mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.
PO 7	Project Management and Finance	Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors

PO 8	Communication	Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions
PO 9	Life-long Learning	Recognize the need for and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
PO 10	Ethical Practices and Social Responsibility	Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.
PO 11	Independent and Reflective Learning	Observe and examine critically the outcomes of one's actions and make corrective measures subsequently and learn from mistakes without depending on external feedback.

COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE AND COURSE OUTCOMES (COS)

FIRST YEAR: ME (Cloud Computing)

Semester: 1

Semester: 2

Subject Code	Subject Title	L	т	Р	С	Subject Code	Subject Title	L	т	Ρ	С
CSE 601	Data Structures and Algorithms	3	-	-	3	BDA 614	Big Data and Data Visualization	3	-	-	3
CSE 602	Real Time Operating Systems	3	-	-	3	CDC 604	Cloud Networks	3	-	-	3
CDC 602	Cloud Architecture and Management	3	-	-	3	CDC 605	Cloud Security	3	-	-	3
CDC 603	Cloud Application Development with Java	3	-	-	3	CDC 606	Cloud Database Management	3	-	-	3
	Elective - 1	3	-	-	3		Elective - 2	3	-	-	3
CSE-601L	Data Structures and Algorithms Lab	-	-	3	1	BDA-614L	Big Data and Data Visualization Lab	-	-	3	1
CSE-602L	Real Time Operating Systems Lab	-	-	3	1	CDC-604L	Cloud Networks Lab	-	-	3	1
CDC-602L	Cloud Architecture and Management Lab	-	-	3	1	CDC-605L	Cloud Security Lab	-	-	3	1
CDC-603L	Cloud Application Development with Java Lab	-	-	3	1	CDC-606L	Cloud Database Management Lab	-	-	3	1
	Elective - 1 Lab	-	-	3	1		Elective - 2 Lab	-	-	3	1
CDC 695	Mini Project - 1	-	-	-	4	CDC 696	Mini Project -2	-	-	-	4
CDC 697	Seminar - 1	-	-	-	1	CDC 698	Seminar - 2	-	-	-	1
	Total	15	-	15	25	Total		15	-	15	25

SECOND YEAR (FINAL YEAR): ME (Cloud Computing)

III and IV Semester							
CDC 799 Project Work 25							
Total Number of Cree	75						

List of Electives (Theory)

	Elective - 1	Elective - 2			
Code	Subject	Code	Subject		
CSE 628	Client Side Internet Technology	CSE 629	Server Side Internet Technology		
BDA 601	Fundamentals of Machine Learning	CSE 630	Data Warehousing and Data Mining		
CDC 607	DevOps for Cloud	BDA 605	Machine Learning for Big Data		
		ENP 601	Entrepreneurship		
		CSE 631	IT Project Management		

List of Electives (Lab)

	Elective - 1	Elective - 2			
Code	Subject	Code	Subject		
CSE 6291	Client Side Internet Technology Lab	CSE 6201	Server Side Internet		
C3E-028L	Client Side Internet recinology Lab	C3E-029L	Technology Lab		
	Fundamentals of Machine Learning Lab		Data Warehousing and Data		
BDA-001L		C3L-030L	Mining Lab		
	DevOps for Cloud Lab		Machine Learning for Big Data		
CDC-007L		DDA-003L	Lab		
		ENP-601L	Entrepreneurship Lab		
		CSE-631L	IT Project Management Lab		

Name of the Institution / Department: Manipal School of Information Sciences (MSIS)

Name of the Program:		Master of Engineering - ME (Cloud Computing)			
Course Title:		Data Structures and Algorithms			
Course Code: CS	SE 601	Course Instructor:			
Academic Year:	2020 - 2021	Semester: First Year, Semester 1			
No of Credits: 3		Prerequisites: Basic Programming – preferably C			
Synopsis:	 This Course provides insig 1. This course introdor of algorithms. 2. Students learn how space 3. Students learn how sorting technique 4. Students learn the programming, gree 	tht on duces students to elementary data structures and design by to design optimal algorithms with respect to time and by to implement link list, stack, queues, searching and s, sets, trees and graphs. he design of divide and conquer technique, dynamic eedy technique and back tracking.			
Course Outcomes (COs):	On successful completion	of this course, students will be able to			
CO 1:	Specify and analyse algori	thms.			
CO 2:	Learn and design progr structure.	ams for implementation of linear and nonlinear data			
CO 3:	Learn and design programs for sorting and searching.				
CO 4:	Illustrate application of greedy technique and bac	divide and conquer technique, dynamic programming, k tracking.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*			*							
CO 2	*	*				*					
CO 3	*					*					
CO 4	*	*				*					

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction	
Algorithm Specification, Performance Analysis	At the end of the topic student should be able to:
	1. Define algorithms (C1)
	2. Analyse algorithms. (C6)
Unit 2: Algorithm Analysis Techniques	
Analysis of Recursive Programs, Solving Recurrence	1. Define recursive programs (C2)
Equations, General Solution for a large class of	2. Design simple recursive programs (C6)
Recurrences.	3. Solve recurrence relations (C6)
Unit 3: Elementary data structures	
Implementation of Lists, Stacks, Queues	1. Design singly linked list (C6)
	2. Design doubly linked list(C6)
	3. Explain the concepts of array-based
	stacks (C2)
	4. Explain the concepts of pointer-based
	stacks (C2)
	5. Design and implement Queues. (C6)
Unit 4: Sorting & Searching Techniques	
Quick sort, Heap sort, Merge sort, Binary search,	1. Develop algorithm for insertion sort,
linear search, Fibonacci search	bubble sort and selection sort. (C6)
	2. Develop and analyse algorithm for quick
	sort (C6)
	3. Develop and analyse algorithm for heap
	sort (C6)
	4. Develop and analyse algorithm for merge
	sort (C6)
	5. Design and analyse algorithms for
	binary, linear and Fibonacci search (C6)
Unit 5: Operations on Sets	
Introduction to Sets, A Linked- List implementation	1. Develop data structures for sets (C6)
of Set, The Dictionary, The Hash Table Data	2. Design a linked list-based
Structure	implementation of sets (C6)
	3. Design a Dictionary (C6)
	4. Design Data structure for hash table (C6)
Unit 6: Trees	
Basic Terminology, Implementation of Trees,	1. Examine the concepts of trees. (C3)
Binary Trees, Binary Search Trees	2. Design and implement general trees (C6)
	3. Design and implement binary trees (C6)
	4. Design and implement binary search
	trees (C6)

Unit 7: Graphs	
Basic definitions, Representation of Graphs,	1. Define graphs (c6)
Minimum Cost Spanning Tree, Single Source	2. Design data structure for graphs (c6)
Shortest Paths,	3. Formulate an algorithm to solve
All-Pairs Shortest Path	minimum cost spanning tree(c6)
	4. Formulate an algorithm to solve Single
	source shortest path (c6)
	5. Formulate an algorithm to solve All- pair
	shortest path(c6)
Unit 8: Algorithm Design Techniques	
Divide-and-Conquer Algorithms, Dynamic	1. Design of divide and conquer algorithms
Programming, Greedy Algorithms, Backtracking	(C6)
	2. Solve max min, Strassen's matrix
	multiplication, multiplication of long
	integer's problem. (C6)
	3. Design of dynamic programming
	techniques (C6)
	4. Solve matrix chain order problem (C6)
	5. Design of greedy algorithms(C6)
	6. Solve Knap-sack, job scheduling with
	deadlines and optimal storage on tapes problems. (C6)
	7. Design of Back tracking algorithms (C6)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	30	60		
Seminar	-	-		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Clinic	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with COs						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Sessional Examination 1	*	*				
Sessional Examination 2		*	*	*		
Assignment/Presentation	*	*	*	*		
End Semester Examination	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	 "Introduction to Algorithms" Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. "Data Structures& Algorithms" Aho, Hopcroft and Ulmann "Data structures and algorithm analysis in C" Mark Allen Weiss "Computer Algorithms" : Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran

Name of the P	Name of the Program:Master of Engineering - ME (Cloud Computing)	
Course Title: Real Time Operating Systems		Real Time Operating Systems
Course Code: (CSE 602	Course Instructor:
Academic Yea	r: 2020-2021	Semester: First Year, Semester 1
No of Credits:	No of Credits: 3 Prerequisites: Basic Programming – preferably C	
Synopsis:	This Course provides ins	sight on
Course Outcomes (COs):	 On successful completion of this course, students will be able to This course introduces students to basics of operating systems and reoperating systems. This course helps the student to understand the concepts of procemanagement, scheduling, synthetization and dead locks. This course helps the students to learn thread-based programming. Students learn the concept of memory management. Students learn the salient features of real time operating systems 	
CO 1:	Examine the evolution of	of operating systems and real time operating systems.
CO 2:	Design programs based on threads.	
CO 3:	CO 3: Explain the concepts involved in process management, scheduling, synthetization processes.	
CO 4:	CO 4: Explain the concepts involved in memory management, detecting, avoiding recover from dead locks.	
CO 5:	Explain the concepts of	real time systems and real time operating systems

Mapping	of COs t	to POs									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2	*	*	*								
CO 3	*		*								
CO 4	*		*								
CO 5		*	*	*							

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction to OS and RTOS	
Essential features of an OS, Single Processor Systems and Multiprocessor Systems, Essential Features of Batch Processing, Time sharing, Multiprogramming, Interactive systems, User mode and Kernel Mode operations, Distinction between function call and system call, Real time operating system and real time embedded systems.	 At the end of the topic student should be able to: Identify the features of OS and RTOS (C2) Distinguish between single processor and multi-processor systems (C2) Identify the features of batch processing, time sharing, multi programming and interactive systems (C2) Distinguish between user and kernel modes (C2) Distinguish between function and system calls (C2)
Unit 2: Process Management	
A process in memory, process state, PCB, Process scheduling, scheduling Queues, Types of schedulers, Process system calls - IPC using Shared Memory, IPC using Sockets.	 Describe a process, process state, process control block (C2) Illustrate scheduling algorithms, scheduling queues (C3) Examine process related system calls (C1) Illustrate methods for inter process communication through share memory and sockets (C3)
Unit 3: Multithreaded Programming	
Introduction, benefits, multithreading models, Pthreads, Win32 threads, Threading Issues, Thread pools Linux threads.	 Summarize the benefits of multi-threading (C2) Discover threading issues (C2) Illustrate programs using p threads (C3) Examine the benefits of thread pools (C3)
Unit 4: Process Scheduling	
Introduction, scheduling criteria, scheduling Algorithms – FCFS, SJF, PS, RR, Multilevel Queues, Multilevel feedback Queue Scheduling, Scheduling evaluations.	 Distinguish between scheduling algorithms (C2) Examine the criteria for scheduling (C3) Explain FCFS, SJF, PS, RR, Multi-level queues, multi-level feedback queues scheduling algorithms (C2) Evaluate the scheduling algorithms (C5)
Unit 5: Synchronization	
Introduction, Critical Section Problem, Petersons Solutions, synchronization hardware, Semaphores, usage, implementations; Deadlocks and	 Define critical section problem (C1) Demonstrate Software solutions to critical section problems (C3)

(Deemed to be University under Section 3 of the UGC Act, 1956)

starvation, Classical problem of	3.	Demonstrate hardware solution for process
synchronization-Bounded Buffer problem,		synchronization (C3)
Reader's Writer's problem, Dining	4.	Describe the usage and implementation of
Philosophers problem, sleeping barbers		semaphores (C1)
problem; Monitors.	5.	Define dead locks and starvation (C1)
	6.	Illustrate solutions to classical synchanization
		problems like bounded buffer, readers writers,
		dining philosophers and sleeping barbers (C3)
Unit 6: Deadlocks		
Introduction, deadlock, characterization,	7.	Define dead locks (C2)
methods for handling deadlocks, deadlock	8.	Examine methods for handling dead locks (C4)
prevention, deadlock avoidance, recovery	9.	Illustrate various dead lock algorithms (C3)
from deadlock.		
Unit 7: Memory Management		
Memory Management Strategies, Virtual	1.	Examine various memory management
Memory Management.		strategies(C4)
	2.	Examine the evolution of memory
		management (C4)
	3.	Illustrate the benefits of paging and
		segmentation(C3)
	4.	Examine the implementation of demand
		paging(C4)
	5.	Examine the various virtual memory concepts
		(C4)
Unit 8: Real Time Systems		
Overview of Real Time Systems, Real Time	1.	Examine the concepts involved in the design
clocks and Real Time Scheduling Algorithms		of real time systems (C3)
	2.	Design of real time clocks in various real time
		languages (C5)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with COs									
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5				
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation				*	*				
End Semester Examination	*	*	*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	 "Operating System principles", Seventh Edition, Abraham Silberschatz, Peter Galvvin, Grag Gagne. John Wiley Publications "Real – Time Systems and Programming Languages", Allan Burns, Andy Wellings. "Operating Stems Concepts and Design", Milan Milenkovic "Design of Unix Operating System", Maurice Bach (IPC) "The C Programming Language", Kerninghan & Ritchie 5. Kerninghan & Ritchie, "The C Programming Language", Second Edition, Prentice-Hall, 1988.

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Cloud Architecture and Management				
Course Code: CDC 602		Course Instructor:				
Academic Year: 2020-2021		Semester: First Year, Semester 1				
No of Credits: 3		Prerequisites: Ubuntu OS, Networking and Virtualization Concepts, Parallel/Distributed Computing				
Synopsis:	This Course provides insight on1. Foundation and enabling technologies of Cloud Computing.2. Cloud Computing service models.3. Cloud economics and management.					
Course Outcomes (COs):	On successful completion of this course, students will be able to					
CO 1:	Describe the need and	architecture Distributed Computing paradigms.				
CO 2:	Explain the Characteris	tics and architecture of Cloud Computing.				
CO 3:	Compare and contrast	service models and deployment models of Cloud.				
CO 4:	Explain the concept of Virtualization, Web Services as a prime Enabling Technolo of Cloud Computing.					
CO 5:	Design an Infrastructu applications.	re in Cloud for High availability and Fault Tolerant Web				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2		*	*								*
CO 3					*	*		*			
CO 4		*	*						*		
CO 5		*					*			*	

Course content and outcomes:	
Content	Competencies
Unit 1: Overview of Computing Paradigm	
Recent trends in Computing, Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing - Evolution of cloud computing: Business driver for adopting cloud Computing. Unit 2: Introduction to Cloud Computing A Cloud Computing (NIST Model), Introduction to Cloud Computing, History of Cloud Computing, Cloud service providers - Properties, Characteristics & Disadvantages: Pros and Cons of Cloud Computing, Benefits of Cloud Computing, Cloud computing vs. Cluster computing vs.	 At the end of the topic student should be able to: Describe evolution of Cloud Computing(C2) Examine the differences between computing paradigms (C3) Examine the overview of Cloud Computing (C2) 1. Describe Cloud computing characteristics (C2) 2. Illustrate Cluster vs Grid Computing (C3) 3. Explain the Comparisons between Grid vs Cloud Computing (C1)
Grid computing - Role of Open Standards.	
Unit 3: Cloud Computing Fundamentals	
Cloud Computing definition, private, public and hybrid cloud. Cloud types; IaaS, PaaS, SaaS. Benefits and challenges of cloud computing, public vs private clouds, role of virtualization in enabling the cloud; Business Agility: Benefits and challenges to Cloud architecture. Application availability, performance, security and disaster recovery; next generation Cloud Applications.	 Explain Cloud Computing Service models (C2) Describe the types of Cloud (C1) Illustrate Cloud Computing overview (C3) Demonstrate Private Cloud using Openstack Cloud Suite (C4) Illustrate pros and cons of Cloud Computing (C2) Demonstrate need of Cloud Computing w.r.t to High Availability ,Scalability and Fault Tolerant web architectures (C4)
Unit 4: Overview of Virtualization	
Basics of Virtualization, Types of Virtualization Techniques, Merits and demerits of Virtualization, Full Vs Para- virtualization, Virtual Machine Monitor/Hypervisor, Virtual Machine Basics, Taxonomy of Virtual machines, Ring Levels, Process Vs System Virtual Machines , Emulation: Interpretation and Binary Translation, HLL Virtual Machines.	 Explain how Virtualization is Enabling Technology for Cloud Computing (C2) Demonstrate the need and architecture of Virtualization technology (C1) Explain the types of Virtualization layers (C2) Describe CPU ring levels (C2) Design a Virtualized infrastructure using Hypervisor (C3)

Unit 5: Server Virtualization		
Virtual Hardware Overview - Server	1. 6	Explain the need of Server Virtualization and its
Consolidation – Partitioning Techniques -	E	Benefits (C2)
Uses of Virtual server Consolidation –	2. [Demonstrate Server Virtualization using ESXI
Server Virtualization Platforms.	ł	Hypervisor (C3)
Unit 6: Network Virtualization		
Design of Scalable Enterprise Networks -	1. 1	Explain need and benefits of Network
Layer2 Virtualization – VLAN - VFI - Layer	١	Virtualization (C2)
3 Virtualization – VRF - Virtual Firewall	2. [Demonstrate Virtual Network Virtualization
Contexts - Network Device Virtualization -	((C3)
Data- Path Virtualization – Routing		
Protocols		
Unit 7: Management and Cloud Services		
Reliability, availability and security of	1. 1	Explain the SOA (C2)
services deployed from the cloud.	2. 6	Explain SLA (C2)
Performance and scalability of services,	3. [Describe need of Cloud Economics (C3)
tools and technologies used to manage	4. [Demonstrate Web services with example (C3)
cloud services deployment; Cloud	5. I	Demonstrate Cloud Services using Public
Economics: Cloud Computing	(Cloud Service providers (C3)
infrastructures available for implementing		
cloud based services. Service Management		
in Cloud Computing, Service Level		
Agreements(SLAs), Billing & Accounting,		
Comparing Scaling Hardware:		
Traditional vs. Cloud - Economics of scaling:		
Benefitting enormously - Managing Data -		
Looking at Data, Scalability & Cloud		
Services - Database & Data Stores in Cloud		
- Large Scale Data Processing - Economics		
of choosing a Cloud platform for an		
organization, based on application		
requirements, economic constraints and		
business needs (e.g Amazon, Microsoft and		
Google, Salesforce.com, IBM Bluemix)		

Learning strategies, contact hours and student learning time								
Learning strategy	Contact hours	Student learning time (Hrs)						
Lecture	30	60						
Quiz	02	04						
Small Group Discussion (SGD)	02	02						
Self-directed learning (SDL)	-	04						
Problem Based Learning (PBL)	02	04						
Case Based Learning (CBL)	-	-						
Revision	02	-						
Assessment	06	-						
TOTAL	44	74						

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with COs									
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5				
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation		*		*					
End Semester Examination	*	*	*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	 Barrie Sosinsky, "Cloud Computing Bible", Wiley-India, 2010 Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, ",Cloud Computing: Principles and Paradigms", Wiley, 201 Nikos Antonopoulos, Lee Gillam, "Cloud Computing: Principles, Systems and Applications", Springer, 2012. Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Wiley-India, 2010

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)			
Course Title:		Cloud Application Development with Java			
Course Code: CDC 603		Course Instructor:			
Academic Year: 2020 - 2021		Semester: First Year, Semester 1			
No of Credits: 3		Prerequisites: Cloud Application Basics, OOP's concepts,			
		Java programming language, IoT Basics			
	This Course provides ins	sight on			
Synonsis	1. Cloud application	on development with IoT devices using Java Programming.			
Synopsis.	2. To provide practical knowledge of design and develop of Java application				
	with WebSocke	t, MQTT protocol and create RESTful API's.			
Course	On successful completic	on of this course, students will be able to			
Outcomes		on or this course, students will be able to			
(COs):					
CO 1:	Write Java application u	ising swings.			
CO 2:	Model Relational database to communicate with Java application.				
CO 3:	Show interactive communication with IoT enabled devices.				
CO 4:	Model application as RE	STful API and deploy in Cloud Application Platform.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*		*								
CO 3	*	*									
CO 4	*				*						

Course content and outcomes:					
Content	Competencies				
Unit 1: Introduction					
Design Considerations for cloud Applications: Scalability – Reliability & Availability – reference Architecture for Cloud Applications – cloud Application Design Methodologies: Service Oriented Architecture – Cloud Component Model – Services of cloud Applications – Model View Controller – Restful Web Services – Data Storage Approaches: SQL – NOSQL Approaches.	 At the end of the topic student should be able to: 1. Explain Design Considerations for cloud Applications(C2) 2. Discuss Reference Architecture for Cloud Applications like CDN, analytics etc (C2) 3. Explain cloud Application Design Methodologies like SOA, CCM, MVC etc.(C3) 4. Discuss Data Storage Approaches Relational and Non-Relational.(C2) 				
Unit 2: Introduction to OOPS					
OOPS – Procedural vs Object Oriented languages – Abstraction – Encapsulation – Polymorphism – Inheritance.	 Explain advantages of object-oriented programming over Procedural oriented programming language. (C1) Explain OOPS concepts like Class, Object Abstraction, Encapsulation, Polymorphism, and Inheritance. (C1) 				
Unit 3: Introduction to JAVA					
JAVA Features – Present JAVA language	1. Know about JAVA Features, advantages of				
and - JVM – JVM Architecture - JAVA	Java over other programming languages. (C1)				
Datatypes, Variables, Arrays– JAVA Basic Constructs.	 Explain what is JVM and its Architecture. (C2) Discuss Java basics - Datatypes, Variables, Arrays, Operators, methods, reserved Java keywords. (C1) Explain "this" keyword, Exception handling, Constructs, access specifiers. (C1) Discuss about Encapsulation and Abstraction in java. (C1) 				
Unit 4: Class Concepts	1 Evelois laboritores and its types in laws (C1)				
– Multilevel – Method Overriding – Abstract Class – Interface – Package-IO.	 Explain internance and its types in Java. (C1) Why multiple inheritance cannot be achieved? (C1) Discuss about implementing of method overloading and method overriding. (C1) Importance of using Packages in java. (C1) 				
	 Explain Abstract class and why it is important. (C1) 				

	 Achieve Multiple inheritance using Interfaces. (C1) Major Differences between Abstract class and Interfaces. (C1)
Unit 5: Internet of Things	
Introduction – IoT Architecture – Physical Design – Logical Design – IoT Enabling technologies – IOT Levels and Deployment Templates – IoT-Cloud Platform - IoT Protocols: MQTT – WebSockets. Unit 6: JAVA Websockets	 Outline the integration of various elements of IoT ecosystem. (C2)
Websocket Lifecycle – Basic Messaging – Advanced Messaging – Securing Web Sockets.	 Outline Client Server Architecture using Java. (C1)
Unit 7: REST API	
REST Style Architecture – http – URI – Request Methods – Status Codes – JAVA JSON Processing – JAX RS API.	1. Illustrate REST API. (C3)
Unit 8: JAVA MQTT	
M2M with JAVA – MQTT Applications with PAHO	1. Illustrate MQTT Protocol. (C3)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	
Sessional Examination 1	*	*			
Sessional Examination 2		*	*		
Assignment/Presentation		*		*	
End Semester Examination	*	*	*	*	

Feedback Process	End-Semester Feedback
Reference Material	 William Hohl, Christopher Hinds, "ARM Assembly Language: Fundamentals and Techniques",2nd Edition, ISBN-13: 978- 1482229851, ISBN-10: 1482229854 Andrew Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide: Designing and Optimizing System Software",1st Edition, The Morgan Kaufmann Series in Computer Architecture and Design, ISBN-13: 978-1558608740, ISBN-10: 1558608745 David Seal, "ARM Architecture Reference Manual", 2nd Edition, Addison-Wesley Professional. Steve Furber, "ARM System-on-Chip Architecture",2nd Edition, Addison-Wesley Professional, ISBN-13: 078-5342675191,ISBN-10: 0201675196 Douglas V. Hall, "Microprocessors and Interfacing", Mcgraw Hill Educatin, ISBN-10 1259006158, ISBN-13 9781259006159, 2012. Websites & Transaction Papers

Name of the P	Name of the Program: Master of Engineering - ME (Cloud Computing)			
Course Title:		Data Structures and Algorithms Lab		
Course Code:	CSE-601L	Course Instructor:		
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 1		
No of Credits:	1	Prerequisites: C Programming		
Synopsis:	 This Course provides in 1. This course introduced of algorithms. 2. Students learn space 3. Students learn sorting techniq 4. Students learn programming, generation of the second se	sight on roduces students to elementary data structures and design how to design optimal algorithms with respect to time and how to implement link list, stack, queues, searching and ues, sets, trees and graphs. the design of divide and conquer technique, dynamic greedy technique and back tracking		
Course Outcomes (COs):	On successful completion	on of this course, students will be able to		
CO 1:	Specify and analyse alg	orithms		
CO 2:	Learn and design programs for implementation of linear and nonlinear data structure.			
CO 3:	Learn and design programs for sorting and searching.			
CO 4:	D 4: Illustrate application of divide and conquer technique, dynam programming, greedy technique and back tracking.			
CO 5:	Learn to organise the co	ode for scalability and maintainability.		

Mapping	of COs	to POs									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*									
CO 2		*	*		*			*			
CO 3		*	*		*			*			
CO 4		*	*		*			*			
CO 5		*	*		*			*			

Course content and outcomes:	
Content	Competencies
Unit 1: Elementary data structures	
Implementation of Lists, Stacks, Queues	At the end of the topic student should be able to:
	1. Design and Implement singly linked list.
	2. Design and Implement doubly linked list.
	3. Design and Implement array-based stack.
	4. Design and Implement pointer-based stack.
	5. Design and Implement array-based queues.
	6. Design and Implement pointer-based queues.
Unit 2: Sorting & Searching Techniques	
Quick sort, Heap sort, Merge sort, Binary	1. Design and implement programs for insertion
search, linear search, Fibonacci search	sort, bubble sort and selection sort.
	2. Design and implement programs for quick
	sort.
	3. Design and implement programs for heap
	sort.
	4. Design and implement programs for merge
	sort.
	5. Design and implement programs for binary,
	linear and Fibonacci search.
Unit 3: Trees	
Basic Terminology, Implementation of	1. Write a program to implement binary trees.
Trees, Binary Trees, Binary Search Trees	2. Write a program to implement binary search
	trees.
	3. Tree traversal technique.
Unit 4: Graphs	
Basic definitions, Representation of	1. Write programs to represent a graph using
Graphs, Minimum Cost Spanning Tree,	adjacency matrix and adjacency list
Single Source Shortest Paths, All-Pairs	techniques.
Shortest Path	2. Write a program to implement minimum cost
	spanning tree.
	3. Write a program to solve Single source
	shortest path problem.
	4. Write a program to solve All- pair shortest
	path problem.
Unit 5: Algorithm Design Techniques	
Divide-and-Conquer Algorithms, Dynamic	1. Write a program to solve max min problem.
Programming, Greedy Algorithms,	2. Write a program to solve Strassen's matrix
Backtracking	multiplication problem.
	3. Write a program to solve matrix chain order
	problem.

4.	4. Write programs to solve knap-sack, job
	scheduling with dead line and optima storage
	on taps problems.
5.	5. Write programs to solve n queens and graph
	colouring problems.

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:	
Formative:	Summative:
Internal Practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with COs							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2		*	*	*			
Assignment/Presentation	*	*	*	*	*		
Laboratory Examination	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	 "Introduction to Algorithms" Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. "Data Structures& Algorithms" Aho, Hopcroft and Ulmann "Data structures and algorithm analysis in C" Mark Allen Weiss "Computer Algorithms" : Ellis Horowitz, SartajSahni , Sanguthevar Rajasekaran

Name of the P	rogram: Master of Engineering - ME (Cloud Computing)				
Course Title:	Real Time Operating Systems Lab				
Course Code:	CSE-602L Course Instructor:				
Academic Yea	r: 2020 - 2021 Semester: First Year, Semester 1				
No of Credits:	Prerequisites: Knowledge on C programming, Operating System concepts System concepts				
Synopsis:	 This Course provides insight on 1. Basics of operating systems and real operating systems. 2. Understand the concepts of process management, scheduling, synthetization and dead lock. 3. Learn thread-based programming. 4. Learn the concept of memory management. 5. Learn the salient features of real time operating systems 				
Course Outcomes (COs):	On successful completion of this course, students will be able to				
CO 1:	Experiment process creation, process hierarchies and multi-thread concepts.				
CO 2:	Apply process-scheduling algorithms and process synchronization concepts on various scenarios.				
CO 3:	Apply memory management techniques on various scenarios				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*						
CO 2	*	*	*		*						
CO 3	*	*	*		*						

Course content and outcomes:						
Content	Competencies					
Unit 1:						
Basics of C programming: String	At the end of the topic student should be able to:					
manipulation, file handling.	1. Practice basic C programming concepts (C3)					
Unit 2:						
Process creation, fork, exec, wait, multi	1. Experiment process creation, process					
thread concepts.	hierarchies and multi-thread concepts. (C4)					
Unit 3:						
Process scheduling algorithms	1. Apply process-scheduling algorithms on					
	various scenarios. (C3)					
Unit 4:						
Process synchronization concepts.	1. Experiment process synchronization concepts					
	(C4)					
Unit 5:						
Memory management techniques	1. Apply memory management techniques on					
	various scenarios (C3)					

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:	
Formative:	Summative:
Internal Practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with COs				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*		
Assignment/Presentation			*	
Laboratory Examination	*	*	*	

Feedback Process	End-Semester Feedback
Feedback Process	 End-Semester Feedback Text mining handbook: advanced approaches in analyzing unstructured data Feldman, Ronen and James Sanger, 9780521836579, CUP, 2008 Linked Lexical Knowledge Bases Iryna Gurevych, Judith Eckle- Kohler, Michael Matuschek,9781627059749, Morgan & Claypool, 2016 Introduction to information retrieval Manning, Christopher D. and Prabhakar Raghavan and Hinrich Schutze, 9780521865715, Cambridge University Press,2008 Text mining: classification, clustering and applications Srivastava, Ashok and Mehran Sahami (eds.)., 9781420059403, Chapman & Hall,2009 Weiss, S. M., Indurkhya, N., Zhang, T. (2010). Fundamentals of Predictive Text Mining. Springer: New York. ISBN: 978-1849962254 Pustejovsky, J. and Stubbs, A. (2012). Natural Language Annotation for Machine Learning. O'Reilly. Foundations and Trends in Information Retrieval, 2(1-2): 1–135. Available online at: http://www.cs.cornell.edu/home/llee/opinion-mining-sentiment- analysis-survey.html. Manning, C. D., Raghavan, P., and Schutze, H. (2008). Introduction to Information Retrieval, Chapters 6 and 13-18, Cambridge University Press. Available online at: http://nlp.stanford.edu/IR- book/
	Articles: https://www.healthcatalyst.com

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)	
Course Title: Cloud Architecture and Management Lab		Cloud Architecture and Management Lab	
Course Code:	CDC-602L	Course Instructor:	
Academic Year: 2020 - 2021		Semester: First Year, Semester 1	
No of Credits:	1	Prerequisites: Ubuntu OS, Networking and Virtualization	
	1	Concepts, Parallel/Distributed Computing	
	This Course provides in:	sight on	
	1. Virtualization a	nd web services of Cloud Computing.	
Synopsis:	2. Cloud computir	ng service models.	
	3. Building a priva	te cloud.	
Course			
Outcomes	On successful completion of this course, students will be able to		
(COs):			
CO 1:	Describe the need and	architecture Distributed Computing paradigms.	
60 3:	Explain the concept of	f Web Services as a prime Enabling Technology of Cloud	
CO 2:	Computing.		
60.3	Design an Infrastructure in Cloud for High availability and Fault Tolerant We		
applications.			
CO 4:	Demonstrate the Mana	agement of Cloud services for Infrastructure, Platform and	
CO 4: Software.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*		*		*						
CO 3		*			*						
CO 4			*		*						

Course content and outcomes:	
Content	Competencies
Unit 1: Overview of Computing Paradigm	
Recent trends in Computing, Grid Computing, Cluster Computing, Distributed Computing, Utility Computing,	At the end of the topic student should be able to: 1. Design a Cluster using node of Computers to understand Distributed Computing (C3)
Cloud Computing - Evolution of cloud computing: Business driver for adopting	
Unit 2: Introduction to Cloud Computing	
A Cloud Computing (NIST Model)	1. Demonstrate open source cloud like
, Introduction to Cloud Computing ,	Openstack to understands basic
History of Cloud Computing ,	characteristics and overview of Cloud
Characteristics & Disadvantages: Pros and	computing (C2)
Cons of Cloud Computing. Benefits of	
Cloud Computing, Cloud computing vs.	
Cluster computing vs. Grid computing -	
Role of Open Standards.	
Unit 3: Cloud Computing Fundamentals	
Cloud Computing definition, private, public	1. Design Private Cloud using open source tools
and hybrid cloud. Cloud types; IaaS, PaaS,	like Openstack / Eucalyptus (C4)
SaaS. Benefits and challenges of cloud	2. Demonstrate different services offered by
computing, public vs private clouds, role of	cloud to understand Cloud service models and
Pusiness Agility: Penefits and shallonges to	cloud types (C2)
Cloud architecture Application	
availability, performance, security and	
disaster recovery; next generation Cloud	
Applications.	
Unit 4: Overview of Virtualization	
Basics of Virtualization – Types of	1. Design Virtualized Server using Type 2
Virtualization Techniques – Merits and	Hypervisor like Oracle Virtual Box / VMware
demerits of Virtualization –Full Vs Para-	Workstation to understand concepts of Virtual
Virtualization – Virtual Machine	machine (C3)
Basics – Taxonomy of Virtual	2. Design virtualized server using viviware ESXI Hypervisor to understand concents of Virtual
machines – Ring Levels – Process Vs	machine (C3)
System Virtual Machines – Emulation:	

Interpretation and Binary Translation - HLL		
Virtual Machines.		
Unit 5: Server Virtualization		
Virtual Hardware Overview - Server	1.	Design Virtualized Server using VMware ESXI
Consolidation – Partitioning Techniques -		Hypervisor to understand concepts of Server
Uses of Virtual server Consolidation –		Virtualization (C3)
Server Virtualization Platforms.		
Unit 6: Network Virtualization		
Design of Scalable	1.	Design Virtualized Server using VMware ESXI
Enterprise Networks – Layer2 Virtualizati		Hypervisor to understand concepts of
on – VLAN - VFI -		Network Virtualization (C3)
Layer 3 Virtualization – VRF - Virtual		
Firewall Contexts - Network		
Device Virtualization - Data- Path		
Virtualization – Routing Protocols		
Unit 7: Management and Cloud Services		
Reliability, availability and security of	1.	Hands on exercise wit AWS Cloud to
services deployed from the cloud.		understand different services offered by
Performance and scalability of services,		Public Cloud (C3)
tools and technologies used to manage	2.	Design a Web services to understand how
cloud services deployment;		Cloud Computing works (C3)
Cloud Economics: Cloud Computing	3.	Explore AWS Cloud to understand Cloud
infrastructures available for		economics and SLA's (C4)
implementing cloud	4.	Design a High availability, Scalable and Fault
based services. Service Management in		tolerant architecture for web application
Cloud Computing - Service		using AWS Services (C4)
Level Agreements(SLAs) - Billing &		
Accounting - Comparing Scaling		
Hardware: Traditional vs. Cloud -		
Economics of scaling: Benefitting		
enormously - Managing Data - Looking at		
Data, Scalability & Cloud Services -		
Database & Data Stores in Cloud - Large		
Scale Data Processing - Economics of		
choosing a Cloud platform for an		
organization, based on application		
requirements, economic constraints and		
business needs (e.g Amazon, Microsoft		
and Google,Salesforce.com, IBM Bluemix)		

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:			
Formative:	Summative:		
Internal Practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	
Sessional Examination 1 * *					
Sessional Examination 2 * *					
Assignment/Presentation	*		*		
Laboratory Examination	*	*	*	*	

Feedback Process	End-Semester Feedback				
Reference Material	 Barrie Sosinsky, "Cloud Computing Bible", Wiley-India, 2010 Rajkumar Buyya, James Broberg ,Andrzej M. Goscinski, " Cloud Computing: Principles and Paradigms", Wiley, 201 Nikos Antonopoulos, Lee Gillam, "Cloud Computing: Principles, Systems and Applications", Springer, 2012. Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Wiley-India, 2010 				

Name of the P	Program:	Master of Engineering - ME (Cloud Computing)		
Course Title:		Cloud Application Development with Java		
Course Code: CDC-603L		Course Instructor:		
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 1		
No of Crodits:	1	Prerequisites: Cloud Application Basics, OOP's concepts,		
No or creatts.	T	Java programming language, IoT Basics		
	This Course provides insi	ight on		
C	1. Cloud applicatio	n development with IoT devices using Java Programming.		
2. To Provide pra		tical knowledge of design and develop of Java application		
	with WebSocket	, MQTT protocol and create RESTful API's.		
Course				
Outcomes	On successful completion of this course, students will be able to			
(COs):				
CO 1:	Develop java application using MySQL database.			
CO 2:	Develop Java Web application for client server communication.			
CO 3:	Deploy web application to cloud.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*		*						
CO 2	*				*						
CO 3	*				*						

Course content and outcomes:						
Content	Competencies					
Unit 1: Basic Java Programming						
OOPS Concepts, Basics of Java	At the end of the topic student should be able to:					
Programming, IDE usage.	1. Basic Java program to Implement					
	mathematical calculation concepts. (C1)					
Unit 2: Databases Using Java						
CRUD Operations	1. Using MySQL database to implement create,					
	select, update and delete operations. (C1)					
	2. Develop java application to connect to MySQL					
	database and interact. (C1)					
Unit 3: Web Application Development						
Web Application Development using	1. Develop Java Application to create student					
Swings.	registration portal using swings and MySQL					
	database. (C2)					
	2. Deploy web application to cloud hosing. (C4)					

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:					
Formative:	Summative:				
Internal Practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with COs						
Nature of assessment	CO 1	CO 2	CO 3			
Sessional Examination 1	*	*	*			
Assignment/Presentation	*	*				
Laboratory Examination	*	*	*			

Feedback Process	End-Semester Feedback
Reference Material	 William Hohl, Christopher Hinds, "ARM Assembly Language: Fundamentals and Techniques", 2nd Edition, ISBN-13: 978- 1482229851, ISBN-10: 1482229854 Andrew Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide: Designing and Optimizing System Software",1st Edition,The Morgan Kaufmann Series in Computer Architecture and Design, ISBN-13: 978-1558608740, ISBN-10: 1558608745 David Seal, "ARM Architecture Reference Manual", 2nd Edition, Addison-Wesley Professional. Steve Furber," ARM System-on-Chip Architecture", 2nd Edition, Addison-Wesley Professional, ISBN-13: 078-5342675191,ISBN-10: 0201675196 Douglas V. Hall,"Microprocessors and Interfacing", Mcgraw Hill Educatin , ISBN-10 1259006158,ISBN-13 9781259006159,2012. Websites & Transaction Papers

Name of the P	Program:	Master of Engineering - ME (Cloud Computing)			
Course Title:		Client Side Internet Technology			
Course Code: CSE-628		Course Instructor:			
Academic Year: 2020-2021		Semester: First Year, Semester 1			
No of Credits:	3	Prerequisites: Networking			
This Course provides in		sight on			
	1. Client server a	rchitecture and able to develop a web application using			
Synopsis:	HTML, JavaScript, XML and JSON.				
	2. Students will gain the skills and project-based experience needed for entry				
	into web application and development careers.				
Course					
Outcomes	On successful completi	on of this course, students will be able to			
(COs):					
CO 1:	Recall the history, stand	dards, and technology associated with Internet.			
co 2:	Apply HTML, HTML5 Ca	scading Style Sheets (CSS) to develop a multimedia website			
CO 2.	for all domain needs.				
CO 3:	Apply Javascript to optimize website on client side.				
CO 4:	Use various data representation formats to store data.				
CO 5:	Describe different frameworks like bootstrap and anjular.js.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*			*						
CO 3	*	*			*						
CO 4	*				*						

Course content and outcomes:					
Content	Competencies				
Unit 1: Introduction					
Introduction to Internet, History of	At the end of the topic student should be able to:				
Internet, Internet Standards, Introduction	1. Explain the concept of Internet (C5).				
to web, Web1.0 vs Web2.0, web	2. Describe the history of Internet (C4).				
development strategies, Web applications,	3. List out the Internet Standards (C2).				
Types of Servers, Client Server Model,	4. Explain the concept of web (C4).				
Protocols for Internet.	2. Explain the protocols governing the web(C4)				
	3. Appraise the web development strategies (C5)				
	4. List out the Web applications (C1)				
Unit 2: HTML					
Basic tags of HTML, Common Tags,	1. Construct the Basic web page using tags of				
Formatting Tags, Images and Linking, List	HTML (C4).				
and Table Structure, Forms and control:	2. Compare the difference between semantic				
Text, Radio, Checkbox, Select, Button,	and non-semantic tags (C5)				
Input.	3. Design web page using Common Tags,				
	Formatting Tags, Images and Linking, List and				
	Table Structure (C4)				
	4. Forms and control Text, Radio, Checkbox,				
	Select, Button, Input(C5)				
HTML Graphics, HTML Media, HTML API	1. Explain the importance of HTML Graphics,				
	HTML Media, HTML API (C4)				
Unit 4: CSS3					
Inline styles, internal style sheets, linking	1. Design web pages using Inline styles, internal				
external style sheets, positioning	style sheets, linking external style sheets(C5)				
elements, backgrounds, element	2. Differentiate between absolute and relative				
dimensions, Box Model and text flow,	positioning elements(C4)				
Media Types, Building a CSS drop-down	3. Apply backgrounds to web pages (C5).				
menu.	list out the different element dimensions (C1)				
	4. Importance of Box Model and text flow,				
	Media Types (C2)				
	5. Building a CSS drop-down menu(C5)				
Unit 5: Javascript	1 List out the applications of low-Coviet (C1)				
Tunos Operators Control Statements	I. List out the applications of JavaScript (C1). Evaluate the elements of Java Script (Verichles				
Functions Dialog - obtaining user input	2. Explain the elements of Java Script - Variables,				
with prompt dialogs Document Object	3 Develop web page by using conditional				
Model(DOM) - Document Form Event	statement to control the execution (c5)				
Handling, JQUERY. AJAX.					

	 4. Create web page to perform repetitive task using looping statements (C5) 5. Develop web page using Functions Dialog - obtaining user input with prompt dialogs (C5)
Unit 6: XML vs JSON vs YAML	
Introduction and Introduction and	1. Explain the importance of XML.(C3)
Features , Use of XML, XML document,	2. List out the applications of XML (C1)
Creating XML, DTD, Reading XML,	3. Construct XML document and Reading XML
Introduction to JSON, JSON Structure,	(C4)
Object Representation, YAML, YAML	4. Explain the importance of JSON (C3).
structure, USE Case.	5. Describe to represent object(C3)
	 Compare the difference between JSON and XML (C4)
Unit 7: Frameworks	·
Bootstrap, Angular.js	1. Describe the main features of Bootstrap(C1)
	2. Write HTML code using the Bootstrap
	library(C3)
	 Create a responsive layout with the Bootstrap grid system(C5)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	36	72			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	-	-			
Clinic	-	-			
Practical	36	72			
Revision	-	-			
Assessment	6	-			
TOTAL	78	144			

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with COs									
Nature of assessment	CO 1	CO 2	CO 3	CO 4					
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation	*		*	*					
End Semester Examination	*	*	*	*					

Feedback Process	End-Semester Feedback
Reference Material	 "Internetworking with TCP/IP Vol I: Principles, Protocols and Architecture", Douglas E Comer, III Ed. PHI, 1997. "Microsoft TCP/IP on Windows NT 4.0", MCSE. "Internetworking with TCP/IP Client–Server Programming and applications, BSD Socket version", Douglas E Comer and David L Stevens, Vol. III. "TCP/IP Illustrated, Volume I, The Protocols", W Richard Stevens, International Student Edition, 1999. "Advanced Internet Technologies", Uyless Black, PHI "High Performance Communication Networks", Jean Warland & Praveen Varaiya – Morgan Kaufmann

Name of the P	Program:	Master of Engineering - ME (Cloud Computing)			
Course Title:		Fundamentals of Machine Learning			
Course Code:	BDA-601	Course Instructor:			
Academic Year: 2020 - 2021		Semester: First Year, Semester 1			
No of Credits: 3		Prerequisites: Basic Programming – preferably Python			
	This Course provides in	sight on			
	1. This course p	provide the concept of machine learning, applications,			
	techniques, des	sign issues and approaches to machine learning.			
	2. This course pro	ovide the fundamental knowledge about concept learning,			
Synopsis:	hypothesis and	bias.			
	3. To implement machine learning algorithms such as Decision Tree learning,				
	Probably Approximately Correct (PAC) learning, Bayesian learning, Instance-				
	based learning, Principal Component Analysis (PCA) and Ensemble methods				
	in real time dat	ta set for various analysis.			
Course					
Outcomes	On successful completion	on of this course, students will be able to			
(COs):					
CO 1:	Identify the goals, ap	plications, types and design issues of machine learning			
CO 1.	techniques.				
CO 2:	Relate concept learning	g and hypothesis space.			
CO 3:	Apply PCA learning app	roach to reduce the dimension.			
CO 4:	Analyse different machine learning algorithms.				
CO 5:	Design ensemble metho	ods.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:							
Content	Competencies						
Unit 1: Introduction							
Definition of Machine Learning, Goals and applications of machine learning, Basic design issues and approaches to machine learning, Types of machine learning techniques	 At the end of the topic student should be able to: 1. Define Machine Learning (C1) 2. Describe about any three applications for which machine learning approaches seem appropriate. (C2) 3. Illustrate different types of machine learning techniques (C3) 						
Unit 2: Inductive Classification							
The concept learning task, Concept learning as search through a hypothesis space, General-to-specific ordering of hypotheses, Finding maximally specific hypotheses, Version spaces and the Candidate elimination algorithm, Inductive bias. Unit 3: Decision Tree learning Representing concepts as decision trees, Recursive induction of decision trees, Picking the best splitting attribute, Entropy and information gain, Searching for simple trees and computational complexity.	 Relate concept learning and hypothesis space (C4). Apply different algorithms to obtain most general and most specific hypotheses from the training examples. (C3) Apply decision tree algorithm to find the hypothesis space (C3) Construct decision tree machine learning algorithm (C5) Explain the method of choosing training examples and target function in the design of a machine learning system (C2) Explain different validation technique to find the accuracy in training and testing of data set 						
	(C5)						
Unit 4: Computational learning theory							
Models of learnability: learning in the limit, Probably Approximately Correct (PAC) learning, Sample Complexity: quantifying the number of examples needed to PAC learn, Computational complexity of training. Sample complexity for finite hypothesis spaces, Noise Learning Multiple Classes, Bias-variance trade-off, under-fitting and over-fitting concepts.	 Define various terms related to computational learning approach (C1). Describe different models learning in the limit (C2) Calculate the number of training examples required in different types of learning approaches (C). 						

Unit 5: Bayesian learning	
Probability theory and Bayes rule, Naive	1. Write the applications of Bayes theorem (C3)
Bayes learning algorithm - Parameter	2. Describe the use of Logistic Regression in
smoothing, Generative vs. discriminative	Machine Learning (C2)
training, Logistic regression, Bayes nets	3. Predict the target value for the new instance
and Markov nets for representing	using Naïve Bayes classifier. (C3)
dependencies	
Unit 6: Instance-based learning	
Constructing explicit generalizations	1. Construct explicit generalizations (C5)
versus comparing to past specific	2. Discriminate Instances Based and Case-based
examples, K-Nearest Neighbour learning	learning (C4)
algorithm, Case-based reasoning (CBR)	3. Explain K-nearest neighbour learning (C5)
learning	
Unit 7: Continuous Latent Variables	
Principal Component Analysis (PCA),	1. Describe use of Principal Component Analysis
Applications of PCA	for the complex data set (C2).
	2. Apply PCA to choose principal components
	for the given data set (C3)
Unit 8: Ensemble methods (bagging and bo	oosting)
Using committees of multiple hypotheses,	1. Choose a suitable method of ensemble
Bagging, Boosting, DECORATE, Active	learning approach (C3).
learning with ensembles	2. Explain various ensemble techniques (C5)

Learning strategies, contact hours and student learning time								
Learning strategy	Contact hours	Student learning time (Hrs)						
Lecture	30	60						
Quiz	02	04						
Small Group Discussion (SGD)	02	02						
Self-directed learning (SDL)	-	04						
Problem Based Learning (PBL)	02	04						
Case Based Learning (CBL)	-	-						
Revision	02	-						
Assessment	06	-						
TOTAL	44	74						

Assessment Methods:	
Formative:	Summative:
Internal practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with COs									
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5				
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation	*	*	*	*					
End Semester Examination	*	*	*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	 T. Mitchell, "Machine Learning", McGraw-Hill, 1997. E. Alpaydin, "Machine Learning", MIT Press, 2010. C. Bishop," Pattern Recognition and Machine Learning", Springer, 2006. E. Hart, R. Duda and D. Stork, "Pattern Classification", Wiley-Interscience, 2000. T. Hastie, R. Tibshirani and J. Friedman, "The Elements of Statistical Learning: Data Mining, Inference and Prediction", Springer, 2nd Edition, 2009. Jason Bell, "Machine Learning for Big Data", Wiley Big Data Series, 2016. Rama Murthy G," Multidimensional Neural Networks Unified Theory", New Age International, 2008.

Name of the I	Program:	Master of Engineering - ME (Cloud Computing)				
Course Title:		DevOps for Cloud				
Course Code:	CDC-607	Course Instructor:				
Academic Yea	ir: 2020 - 2021	Semester: First Year, Semester 1				
No of Credits:	: 3	Prerequisites:				
	This Course provides in	nsight on:				
Synopsis:	1. DevOps Produ	uct Life Cycles Stage.				
	2. Automation o	of product lifecycle.				
Course						
Outcomes	On successful complet	ion of this course, students will be able to				
(COs):						
CO 1:	Explain the concept of automation of Product Life Cycle stages.					
co 2:	Demonstrate Continuc	ous Integration / Continuous Testing / Continuous Deployment				
CO 2.	of Product.					
Compare and contras		t existing Software Methodologies with DevOps Life Cycle				
co 3.	stages.					
CO 4:	Design and DevOps me	ethodologies for Product development and Release				
CO 5:	Explain the concepts o	f Tools used in each stages of DevOps.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2			*		*						
CO 3		*	*								
CO 4	*										
CO 5	*										

Course content and outcomes:					
Content	Competencies				
Unit 1: DevOps Introduction					
Understanding Development-	At the end of the topic student should be able to:				
Developement SDLC: WaterFall & Agile -	1. Explain about the Product Life Cycle Software				
Understanding Operations - Dev vs Ops -	methodologies (C2)				
DevOps to the rescue - What is DevOps -	2. Describe DevOps life cycle for Product				
DevOps SDLC - Continous Delivery model	Development and Release (C2)				
- DevOps tools for DevOps SDLC - DevOps	3. Explain the stages of DevOps (C2)				
Roles & Responsiblities.	4. Describe about Continuous Integration /				
	Continuous Deployment pipeline. (C2)				
	5. Write the significance of automation in				
	Product life cycle management. (C3)				
	6. Describe different between standard software				
	methodologies and DevOps software				
	methodologies. (C2)				
Unit 2: Linux					
Linux Introduction, Principles & Linux	1. Explain the evolution of Linux OS (C2)				
distro – Booting - Command line utililities	2. Explain Linux File System (C2)				
& Basic commands - Linux Filesystem -	3. Demonstrate Linux Users and Groups (C3)				
Filters & I/O Redirections - Users & Group	4. Describe OS Level Virtualization techniques				
administration - File permissions &	like Containers (C3)				
Ownerships - Sudo - Software Managemen	5. Demonstrate basic Linux Commands (C4)				
- Useful tools: ssh, telnet, scp, rsync, disk					
utils, backups etc - Service & Process					
management - Shell Scripting - Systems					
and HW stats – Linux Containers (lxc) -					
Dockers – Kubernetes and Microservices .					
Unit 3: Networking fundamentals					
Components of computer networks -	1. Explain Computer network and devices (C2)				
Classification: LAN, WAN, Peer to Peer	2. Demonstrate subnetting and its need (C3)				
network, Server based – Switches, Routers	3. Explain IPV4 Addressing scheme (C2)				
- Network Architecture - Protocols - Port	4. Demonstrate type of Network Devices like				
numbers - DNS - DHCP - IP Addresses	Switches , Hub , Router using Simulator Tools				
- Ip Addresses & Subnet Masks - IP	(C4)				
Address Ranges - Subnetting - Private Vs	5. Describe networking Services like DNS , DHCP				
Public networks - High Availaiblity -	, NACL , FTP etc (C4)				
Firewalls & NACL - Web Application					
Architecture - Infrastructure - Network					
layout - Services & Components -					
Architecture from a DevOps perspective.					

Unit 4: Automation, Orchestration & Config	g Manag	ement
Version control system with Git : What is	1.	Explain need and types of version control
VCS & why it is needed - DevOps use cases		software (C1)
- Setup your own repo with git - Manage	2.	Describe architecture of Distributed version
your code base/source code with GIT &		control systems (C2)
GITHUB	3.	Explain Git and Github as case study (C3)
Unit 5: Continuous Integration with Jenkins	5	
Introduction to continuous integration	1.	Describe about Continuous Integration /
Build & Release and relation with DevOps -		Continuous Deployment pipeline. (C2)
Understanding development and	2.	Write the significance of automation in
developers - Why Continuous integration		Product life cycle management. (C3)
Jenkins introduction and setup - Jenkins	3.	Describe different between standars software
projects/jobs - Jenkins plugins Jenkins		methodologies and DevOps software
administration: Users - Nodes/slaves -		methodologies. (C2)
Managing plugins - Managing software	4.	Give examples for Automation of stages of
versions - Introduction - Phases - Java		Product development using DevOps . (C2)
builds - Build and Release job/project setup	5.	Write the limitation of Current Software
Nexus: Intro & Setup - Software		methodologies for Product Development. (C3)
versioning & Hosted repository -	6.	Describe the architecture of Continuous
Integration with Jenkins - Continuous		Integration server. (C2)
integration job/project setup Complete	7.	Apply DevOps methodologies for Product
Jenkins project: Packinging Artifacts -		Development and Release(C3
Static code Analysis - Tomcat setup Staging		
& productions - Artifacts deployments to		
webservers from Jenkins - Build Pipeline		
- Jenkins not just CI tool anymore - More		
DevOps use cases of Jenkins		
Unit 5: Ansible		
Configuration Management & Automation	1.	Write the steps in Automation of Testing in
- What is Ansible & its features - Ansible		Web development. (C3)
setup on local & cloud - Understanding	2.	Explain the operations Continuous Testing.
Ansible architecture & Execution -		(C5)
Inventory Ad hoc commands: Automating	3.	Write the taxonomy of Continuous Integration
Change Management with Ad Hoc		/ Continuous Delivery / Continuous
commands- Playbook Introduction-		Deployment (C3)
Ansible configuration with ansible.cfg-	4.	Design a Workflow for Automation of Product
Ansible documentation- Modules, modules		life cycle using DevOps (C5, P3).
& lots of modules- Writing playbook for	5.	Construct a Continuous Integration /
webserver & DB server deployments- Tasks		Continuous Deployment pipeline (C5)
- Variables - Templates - Loops - Handlers	6.	Compare Standard Software methodologies vs
- Conditions- Register- Debugging - Ansile		DevOps methodologies for Product
Roles- Identify server roles - Roles		Development. (C6, P2)

structure-Creating, Managing and	7. Describe about Containers and Container
executing roles- Ansible Galaxy- Exploring	Orchestration Services. (C2)
Roles from Galaxy- Download Galaxy roles	8. Examine the advantages of using Containers in
and integrate with your code- Ansible	Web development(C4)
Advanced Execution - Improving execution	9. Describe Container orchestration services
time- Limiting and selecting tasks-	architecture(C2)
Troubleshooting and Testing.	10. Show the function of Container orchestration
	services(C3)
	11. Define Configuration Management tools and
	its need. (C1)
	12. Describe the features of Configuration
	Management. (C2)
	13. Explain the architecture of Configuration
	Management (C5)
	14. Design a Configuration Management Codes to
	administrate infrastructure of organization
	(C5)
	15. Explain the need of Continuous Monitoring
	tools (C5)
	16. Design an Architecture Continuously Monitor
	infrastructure. (C4)

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with COs						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Sessional Examination 1	*	*				
Sessional Examination 2			*	*	*	
Assignment/Presentation	*		*			
End Semester Examination	*	*	*	*	*	

Feedback Process	End-Semester Feedback
Reference Material	 Eric Foster-Johnson , John C. Welch , Micah Anderson, Beginning Shell Scripting (Programmer to Programmer), Wrox Publications Randal K. Michael "Mastering Unix Shell Scripting: Bash, Bourne, and Korn Shell Scripting for Programmers, System Administrators, and UNIX Gurus", 2nd Edition, Wiley Publications Bintu Harwani, "UNIX & Shell Programming", Oxford Publications, 2013 John Ferguson Smart, "Jenkins: The Definitive Guide", O'reilly Publications Mitesh Soni, "Jenkins Essentials", Packt Publications Rafal Leszko, "Continuous Delivery with Docker and Jenkins", Packt Publications Veselin Kantsev, "Implementing DevOps on AWS", Packt Publications Kandall Smith, "Docker Orchestration", Packt Publications Alan Berg, "Jenkins Continuous Integration Cookbook", Packt Publications Kumaran S., Senthil, " Practical LXC and LXD Linux Containers for Virtualization and Orchestration", Apress Publications Konstantin Ivanov, " Containerization with LXC" , Packt Publications Karl Matthias, Sean Kane, "Docker: Up & Running: Shipping Reliable Containers in Production", O'Reilly Media

Name of the P	Program: Master of Engineering - ME (Cloud Computing)			
Course Title:	itle: Client Side Internet Technology Lab			
Course Code:	CSE-628L	Course Instructor:		
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 1		
No of Credits:	1	Prerequisites: No prerequisite		
Synopsis:	This Course provides in:	sight on		
Course				
Outcomes				
(COs):				
CO 1:	Insert graphic, link table in web page, create web page			
CO 2:	Use cascading style sheets to create layout			
CO 3:	Create dynamic web page using JavaScript and Dom Elements			

Mapping	of COs	to POs									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*				*						
CO 2	*				*						
CO 3	*	*			*						

Course content and outcomes:				
Content	Competencies			
Unit 1:				
HTML	At the end of the topic student should be able to:			
	1. Design web page using HTML tags. (C6)			
Unit 2:				
CSS	1. Design layout for web page. (C6)			
Unit 3:				
Java Script	1. Illustrate Dynamic web page using Javascript.			
	(C2)			
Unit 4:				
JSON and XML	1. Utilize JSON and XML objects in web page. (C3)			
Unit 5:				
Framework	1. Develop rapid website development using			
	Bootstrap and Angular JS framework. (C3)			

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:	
Formative:	Summative:
Internal Practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with COs								
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*	*						
Sessional Examination 2		*	*					
Assignment/Presentation	*	*						
Laboratory Examination	*	*	*					

Feedback Process	End-Semester Feedback
Reference Material	 "Internetworking with TCP/IP Vol I: Principles, Protocols and Architecture", Douglas E Comer, III Ed. PHI, 1997. "Microsoft TCP/IP on Windows NT 4.0", MCSE. "Internetworking with TCP/IP Client–Server Programming and applications, BSD Socket version", Douglas E Comer and David L Stevens, Vol. III. "TCP/IP Illustrated, Volume I, The Protocols", W Richard Stevens, International Student Edition, 1999. "Advanced Internet Technologies", Uyless Black, PHI "High Performance Communication Networks", Jean Warland & Praveen Varaiya – Morgan Kaufmann

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Fundamentals of Machine Learning Lab				
Course Code: BDA-601L		Course Instructor:				
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 1				
No of Credits:	1	Prerequisites: Basics of Programming				
Synopsis:	This Course provides insight on					
Course Outcomes (COs):	On successful completion of this course, students will be able to					
CO 1:	Identify the software and tools for designing machine learning applications.					
CO 2:	Apply concept learning and hypothesis space.					
CO 3:	Apply machine learning approach to reduce the dimension.					
CO 4:	Analyse different machine learning algorithms.					
CO 5:	Design ensemble meth	ods.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:							
Content	Competencies						
Unit 1: Introduction							
Definition of Machine Learning Goals and applications of machine learning Basic design issues and approaches to machine learning Types of machine learning techniques	 At the end of the topic student should be able to: 1. Identify programming environments available for the machine learning (C1) 2. Classify the pros and cons of various environments for ML coding (C2) 						
Unit 2: Inductive Classification							
The concept learning task. Concept learning as search through a hypothesis space. General-to-specific ordering of hypotheses. Finding maximally specific hypotheses. Version spaces and the candidate elimination algorithm. Inductive bias.	 Design a machine learning model to get a Maximally Specific Hypothesis for the given training examples (C5). Construct a machine learning model to obtain most general and most specific hypotheses for the given training examples (C5) 						
Unit 3: Decision Tree learning							
Representing concepts as decision trees. Recursive induction of decision trees. Picking the best splitting attribute Entropy and information gain. Searching for simple trees and computational complexity.	 Develop a machine learning classifier using decision tree and random forest (C5) Examine different applications of decision tree and random forest (C4) 						
Unit 4: Computational learning theory							
Models of learnability: learning in the limit. Probably Approximately Correct (PAC) learning. Sample complexity: quantifying the number of examples needed to PAC learn. Computational complexity of training. Sample complexity for finite hypothesis spaces. Noise. Learning Multiple Classes. Bias-variance trade-off, under-fitting and over-fitting concepts.	 Design a learning method to determine the sample complexity of training examples (C5) Analyse bias-variance trade-off, under-fitting and over-fitting concepts (C4) 						
Unit 5: Bayesian learning							
Probability theory and Bayes rule. Naive Bayes learning algorithm - Parameter smoothing.	 Design a machine learning model using Bayes learning (C5). 						

Generative vs. discriminative training	2.	Develop a machine learning classifier models
Logistic regression.		using different approach (C5)
Bayes nets and Markov nets for	3.	Design Bayes nets and Markov nets for
representing dependencies		representing dependencies (C5)
Unit 6: Instance-based learning		
Constructing explicit generalizations	1.	Design machine learning models to classify the
versus comparing to past specific		instances using K-NN and CBR approaches
examples.		(C5).
K-Nearest Neighbour learning algorithm.		
Case-based reasoning (CBR) learning.		
Unit 7: Continuous Latent Variables	I	
Principal Component Analysis (PCA),	1.	Apply PCA for different complex applications
Applications of PCA		(C3)
Unit 8: Ensemble methods (bagging and bo	osting)	
Using committees of multiple hypotheses.	1.	Design a Bayesian Networks (C5)
Bagging	2.	Develop machine learning models using
Boosting		Ensemble models. (C5)
DECORATE		
Active learning with ensembles.		

Learning strategies, contact hours and student learning time								
Lecture	Contact hours	Student learning time (Hrs)						
Seminar	12	-						
Quiz	-	-						
Small Group Discussion (SGD)	-	-						
Self-directed learning (SDL)	-	-						
Problem Based Learning (PBL)	-	-						
Case Based Learning (CBL)	-	-						
Clinic	03	-						
Practical	-	-						
Revision	24	-						
Assessment	03	-						
TOTAL	06	-						

Assessment Methods:							
Formative:	Summative:						
Internal Practical Test	Sessional examination						
Theory Assignments	End semester examination						
Lab Assignment & Viva	Viva						

Mapping of assessment with COs								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*						
Sessional Examination 2			*	*				
Assignment/Presentation	*	*	*	*	*			
Laboratory Examination	*	*	*	*	*			

Feedback Process	End-Semester Feedback						
Feedback Process Reference Material	 End-Semester Feedback Machine Learning, T. Mitchell, McGraw-Hill, 1997 Machine Learning, E. Alpaydin, MIT Press, 2010 Pattern Recognition and Machine Learning, C. Bishop, Springer, 2006 Pattern Classification, R. Duda, E. Hart, and D. Stork, Wiley- Interscience, 2000 T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, 						
	Inference and Prediction. Springer, 2nd Edition, 2009						
	• Machine Learning for Big Data, Jason Bell, Wiley Big Data Series						
	Multidimensional Neural Networks Unified Theory, Rama Murthy G						
	Current literature						

Name of the P	Program: Ma	Master of Engineering - ME (Cloud Computing)				
Course Title:	Dev	DevOps for Cloud Lab				
Course Code: CDC-607L		Course Instructor:				
Academic Yea	r: 2020 - 2021 Ser	nester: First Year, Semester 1				
No of Credits:	1 Pre	requisites: Ubuntu OS, Networking and Software Life				
		cle				
	This Course provides insight	on				
	1. DevOps Product Life	e Cycles Stage.				
Synopsis:	2. Automation of product lifecycle.					
Course						
Outcomes	On successful completion of	f this course, students will be able to				
(COs):						
CO 1:	3. Explain the concept of automation of Product Life Cycle stages.					
<u></u>	4. Design an DevOps n	nethodologies for Product development and Release				
CO 2.						
CO 3·	5. Demonstrate Conti	nuous Integration / Continuous Testing / Continuous				
	Deployment of Proc	luct.				
CO 4:	6. Explain the concepts of Tools used in each stages of DevOps.					
CO 5:	7. Demonstrate Contir	nuous Monitoring of Production Environment.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2	*	*	*								
CO 3	*	*	*								
CO 4		*	*		*						
CO 5		*	*		*						

Course content and outcomes:			
Content	Competencies		
Unit 1: DevOps Introduction			
Understanding Development- Development SDLC : Waterfall & Agile - Understanding Operations - Dev vs Ops - DevOps to the rescue - What is DevOps - DevOps SDLC - Continuous Delivery model - DevOps tools for DevOps SDLC - DevOps Roles & Responsibilities.	At the end of the topic student should be able to: 1. Demonstrate differences between Waterfall and agile software development methodologies (C2)		
Unit 2: Linux Linux Introduction, Principles & Linux	1. Design Ubuntu based VM using hypervisor to		
distro – Booting - Command line utilities & Basic commands - Linux File system - Filters & I/O Redirections - Users &	understand booting process , linux file system , linux networking , Users , Groups and Permissions, tools (ssh , scp etc) (C3)		
Group administration - File permissions & Ownerships- Sudo - Software Mana	 Design a docker environment to containerize web application (C3) 		
gement - Useful tools: ssh, telnet, scp, rsync, disk utils, backups etc - Service & Process management - Shell Scripting - Systems and HW stats – Linux	 Design a Kubernetes cluster to deploy containerized application using Kubernetes deployment and service models (C4) 		
and Microservices			
Unit 3: Networking fundamentals			
Components of computer networks - Classification: LAN, WAN, Peer to Peer network, Server based - Switches - Routers - Network Architecture	 Design a College/ University network using packet tracer to understand computer networking devices like Hub , Switches , Routers and Firewalls (C3) 		
 Protocols - Port numbers - DNS - DHCP IP Addresses - IP Addresses & Subnet Masks - IP Address Ranges - Subnetting Private Vs Public networks - High 	 Design a Network project using Packet tracer to understand Networking services like DNS , DHCP , FTP etc (C3) 		
Availaiblity - Firewalls & NACL - Web Application Architecture - Infrastructure - Network layout - Services &			
perspective.			

Unit 4: Automation, Orchestration & Config Management					
Version control system with Git : What is VCS & why it is needed - DevOps use cases - Setup your own repo with git - Manage your code base/source code with GIT & GITHUB	1.	Create Github account and set up repository and use git commands to Clone , Fork and commit files to Github repositories (C4)			
Unit 5: Continuous Integration with Jenkins					
Introduction to continuous integration. - Build & Release and relation with DevOps - Understanding development and developers - Why Continuous integration Jenkins introduction and setup - Jenkins projects/jobs - Jenkins plugins Jenkins administration : Users - Nodes/slaves - Managing plugins - Managing software versions - Introduction - Phases - Java builds - Build and Release job/project setup Nexus: Intro & Setup - Software versioning & Hosted repository - Integration with Jenkins - Continuous integration job/project setup Complete Jenkinsproject Packinging Artifacts - Stat ic code Analysis - Tomcat setup Staging & productions - Artifacts deployments to webservers from Jenkins - Build Pipeline - Jenkins not just CI tool anymore - More DevOps use cases of Jenkins	1. 2. 3.	Design a Continuous Integration server using Jenkins in Master Slave architecture (C3) Demonstrate CI/CD for JAVA/PHP/nodejs web application (C4) Design an Eclipse Selenium testing project to automate Web application Testing Process (C4)			
Unit 6: Ansible					
Configuration Management Automation - What is Ansible & its features - Ansible setup on local & cloud - Understanding Ansible architecture & Execution - Inventory Ad hoc commands: Automating change Management with AdHoc commands - Playbook Introduction - Ansible configuration	1. 2. 3.	Design a Configuration management service using Ansible to administer group of nodes in lab (C2) Demonstrate installation of Software packages like git , Eclipse , Mysql on group of nodes using Ansible (C4) Design a Continuous monitoring server using Nagios to monitor group of servers for			
with ansible.cfg - Ansible documentation -Modules, modules & lots of modules - Writing playbook for webserver & DB server deployments		different dervices like CPU Utilization , RAM Usage , Network Bandwidth , Apache server logs , Database server logs etc (C5)			

Tasks - Variables - Templates - Loo
 ps - Handlers - Conditions - Register
 Debugging - Ansile Roles - Identify
 server roles - Roles structure - Creating,
 Managing and executing roles - Ansible
 Galaxy - Exploring Roles from Galaxy
 Download Galaxy roles and integrate
 with your code - Ansible Advanced
 Execution - Improving execution time
 Limiting and selecting tasks
 Troubleshooting and Testing

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		
TOTAL	48	-		

Assessment Methods:	
Formative:	Summative:
Internal Practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with COs							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*	*	*	*		
Assignment/Presentation				*	*		
Laboratory Examination	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	 Eric Foster-Johnson , John C. Welch , Micah Anderson, Beginning Shell Scripting (Programmer to Programmer), Wrox Publications Randal K. Michael "Mastering Unix Shell Scripting: Bash, Bourne, and Korn Shell Scripting for Programmers, System Administrators, and UNIX Gurus", 2nd Edition, Wiley Publications Bintu Harwani, "UNIX & Shell Programming", Oxford Publications, 2013 John Ferguson Smart, "Jenkins: The Definitive Guide" ,O'reilly Publications Mitesh Soni, "Jenkins Essentials", Packt Publications Rafal Leszko, "Continuous Delivery with Docker and Jenkins", Packt Publications Veselin Kantsev, "Implementing DevOps on AWS" , Packt Publications Randall Smith, "Docker Orchestration", Packt Publications Alan Berg, "Jenkins Continuous Integration Cookbook" , Packt Publications Kumaran S., Senthil, " Practical LXC and LXD Linux Containers for Virtualization and Orchestration", Apress Publications Konstantin Ivanov, "Containerization with LXC", Packt Publications Karl Matthias, Sean Kane, "Docker: Up & Running :Shipping Reliable Container in Production", O'Reilly Media

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Mini Project - 1				
Course Code: CDC 695		Course Instructor:				
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester1				
No of Credits:	4	Prerequisites: Any programming language and circuit basics				
Synopsis:	Students are expected	to select a problem in the area of their interest and the area				
	of their specialization the	nat would require an implementation in hardware / software				
	or both in a semester					
Course						
Outcomes	On successful completion	on of this course, students will be able to				
(COs):						
CO 1·	Apply the objectives of	the project work and provide an adequate background with				
	a detailed literature sur	vey				
<u> </u>	Breakdown the project	into sub blocks with sufficient details to allow the work to be				
02.	reproduced by an independent researcher					
CO 3·	Compose hardware/sof	tware design, algorithms, flowchart, methodology, and block				
CO 3.	diagram					
CO 4:	Evaluate the results					
CO 5:	Summarize the work ca	rried out				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	
CO 4						*					*
CO 5							*				

Course content and outcomes:							
Content	Competencies						
Phase 1							
Problem identification, synopsis	At the end of the topic student should be able to:						
submission, status submission, mic	1. Identify the problem/specification (C1)						
evaluation.	2. Discuss the project (C2)						
	3. Prepare the outline (C3)						
	4. Describe the status of the project (C2)						
	 Prepare a mid-term project presentation report (C3) 						
	6. Prepare and present mid-term project						
	presentation slides (C3, C5)						
	7. Develop project implementation in						
	hardware/software or both in chosen platform						
	(C5)						
Phase 2							
Status submission, final evaluation.	1. Prepare the progress report (C3)						
	 Prepare the final project presentation report (C3) 						
	 Prepare and present final project presentation slides (C3, C5) 						
	4. Modify and Develop implementation in						
	hardware/software or both in chosen platform						
	(C3, C5)						
	 Justify the methods used and obtained results (C6) 						

Learning strategies, contact hours and student learning time								
Learning strategy	Contact hours	Student learning time (Hrs)						
Lecture	-	-						
Seminar	-	-						
Quiz	-	-						
Small Group Discussion (SGD)	48	-						
Self-directed learning (SDL)	-	-						
Problem Based Learning (PBL)	-	-						
Case Based Learning (CBL)	-	-						
Clinic	-	-						
Practical	-	-						
Revision	-	-						
Assessment	03	-						
TOTAL	51	09						

Assessment Methods:					
Formative:	Summative:				
Project Problem Selection	Mid-Term Presentation				
Synopsys review	Second status review				
First status review	Demo & Final Presentation				

Mapping of assessment with COs							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Mid Presentation	*	*					
Presentation	*	*	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)
Course Title:		Seminar - 1
Course Code:	CDC 697	Course Instructor:
Academic Year: 2020 - 2021		Semester: First Year, Semester 1
No of Credits:	1	Prerequisites: Communication Skill
Synopsis:	1. To select, search ar	nd learn technical literature.
	2. To identify a curren	and relevant research topic.
	3. To prepare a topic a	and deliver a presentation.
	4. To develop the skill	to write a technical report.
	5. Develop ability to w	vork in groups to review and modify technical content.
Course		
Outcomes	On successful completion	on of this course, students will be able to
(COs):		
CO 1:	Show competence in ide	entifying relevant information, defining and explaining topics
	Chow compotence in u	verting with a methodology structuring their and work and
CO 2:	synthesizing informatio	n.
CO 3:	Use appropriate registe	ers and vocabulary, and will demonstrate command of voice
03.	modulation, voice proje	ection, and pacing.
CO 4:	Demonstrate that they	have paid close attention to what others say and can respond
04.	constructively.	
	Develop persuasive spe	eech, present information in a compelling, well-structured,
CO 5·	and logical sequence,	respond respectfully to opposing ideas, show depth of
	knowledge of complex s	subjects, and develop their ability to synthesize, evaluate and
	reflect on information.	

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1											
CO 2											
CO 3											
CO 4											
CO 5											

Learning strategies, contact hours and student learning time								
Learning strategy	Contact hours	Student learning time (Hrs)						
Lecture	-	-						
Seminar	-	-						
Quiz	-	-						
Small Group Discussion (SGD)	14	-						
Self-directed learning (SDL)	-	-						
Problem Based Learning (PBL)	-	-						
Case Based Learning (CBL)	-	-						
Clinic	-	-						
Practical	-	-						
Revision	-	-						
Assessment	-	-						
TOTAL	14	-						

Assessment Methods:				
Formative:	Summative:			
Seminar Topic Selection				
Synopsys review				
PPT Review				

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback	
Reference Material	Particular to the chosen Seminar	

Name of the Program:		Master of Engineering - ME (Cloud Computing)		
Course Title:		Big Data and Data Visualization		
Course Code: BDA 614		Course Instructor:		
Academic Year:	2020-2021	Semester: First Year, Semester 2		
No of Credits: 3		Prerequisites: Programing in Python or Java		
	This Course provides insig	ght on		
	1. This course aims	s to help students get started with Architectures of		
	distributed file sy	stems and distributed computing.		
Synonsis	2. Students learn pr	obability and statistical Inference techniques.		
Synopsis.	3. Students learn	machine learning algorithms required for big data		
	applications.	applications.		
	4. Students learn t	to map data attributes to graphical attributes, and		
	strategic visual er	ncoding based on known properties of visual perception.		
Course				
Outcomes	On successful completion of this course, students will be able to			
(COs):				
CO 1:	Understand the architecture of distributed systems and distributed computing.			
<u> </u>	Identify the characteristic	cs of datasets and compare the trivial data and big data		
02.	for various applications.			
	Explain concept learning	task and hypothesis space, distinguish between general		
CO 3:	and specific hypotheses,	identify the maximally specific hypotheses, Describe		
	version spaces and candid	date elimination algorithm.		
	To solve problems associa	ated with batch learning and online learning, and the big		
CO 4:	data characteristics such	as high dimensionality, dynamically growing data and in		
	particular scalability issue	25		
CO 5:	Practical experience build	ling and evaluating visualization systems.		

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*								
CO 2	*	*	*								
CO 3	*	*	*	*							
CO 4	*	*	*								
CO 5	*	*	*				*				

Course content and outcomes:			
Content	Competencies		
Unit 1: Introduction to Big Data			
Terminology – Challenges - Architectures – Distributed File Systems – Google File System – Hadoop File Systems - Hadoop Ecosystems.	 At the end of the topic student should be able to: 1. Describe architecture of Google file system. (C2) 2. Describe architecture of Hadoop systems. (C2) 		
Unit 2: Statistics	(
Sampling Techniques - Data classification, Tabulation, Frequency and Graphic reporesentation - Measures of central value - Arithmetic mean, Geometric mean, Harmonic mean, Mode, Median, Quartiles, Deciles, Percentile - Measures of variation – Range, IQR, Quartile deviation, Mean deviation, standard deviation, coefficient variance, skewness, Moments & Kurtosis.	 Define True Error of a hypothesis, ε- exhausted Version Space, PAC Learning and Agnostic Learning (C1). Describe data sampling techniques. (C2) 		
Unit 3: Databases for Big Data			
Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – Big Table vs HBase introduction to NoSQL - HiveQL - Querying Data - Sorting And Aggregating, Map Reduce Scripts, Joins & Subqueries, HBase concepts- Advanced Usage, Schema Design, Advance Indexing.	 Describe is Data Science. (C2) Describe the characteristics of NoSQL. (C2) Describe the principle of Map Reduce technique. (C2) 		
Unit 4: Machine Learning for Big Data			
Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models, validating models – cluster analysis – K-means algorithm, Naïve Bayes – Memorization Methods – Linear and logistic regression – supervised and unsupervised learning - Issues regarding classification and prediction, Bayesian Classification, Classification by backpropagation, Classification based on concepts from association rule mining, Other Classification Methods, Classification accuracy.	 Apply candidate-elimination algorithm to obtain most general and most specific hypotheses for the training examples. (C3) Apply the concept of entropy and information gain to find the root node of the decision tree (C3). Design a model using K-means classifier to predict how well products are accepted by the clients (C3). 		

Unit 5: Stream Computing in Big Data	
Introduction - Streaming Data – Sources –	1. Understanding issues with stream
Difference between Streaming Data and Static	processing in big data (C3).
Data. Overview of Large Scale Stream	2. Describe how big data systems achieve
Processing Engines – Issues in Stream	high availability and low latency. (C2)
Processing - Phases in Streaming Analytics	3. Describe how Spark does in memory
Architecture - Vital Attributes - High Availability	processing. (C3)
– Low Latency – Horizontal Scalability-Fault	
Tolerance - Service Configuration and	
Management - Apache ZooKeeper - Distributed	
Stream Data Processing: Co-ordination,	
Partition and Merges, Transactions.	
Duplication Detection using Bloom Filters -	
Apache Spark Streaming Examples Choosing a	
storage system – NoSQL Storage Systems.	
Unit 6: Security in Big Data	
Privacy – Identification of Anonymous People –	1. Describe why Big Data Privacy is self-
Why Big Data Privacy is self-regulating? – Ethics	regulating. (C2)
– Ownership – Ethical Guidelines – Big Data	2. Describe the steps to secure big data
Security – Organizational Security - Steps to	systems. (C2)
secure big data – Classifying Data – Protecting	
– Big Data Compliance - HADOOP SECURITY	
DESIGN	
Unit 7: Data Visualization, Characterization – D	ata Wrangling
Combining and Merging DataSets – Reshaping	1. Understanding various formats of data.
and Pivoting – Data Transformation – String	(C1)
Manipulation, Regular Expressions - DATA	2. Design programs to dynamically extract
AGGREGATION, GROUP OPERATIONS	data from web. (C4)
,TIMESERIES - GoupBy Mechanics – Data	3. Design programs to read data from
Aggregation – Groupwise Operations and	various data sources. (C4)
Transformations – Pivot Tables and Cross	4. Create visualization for time series data.
Tabulations – Date and Time Date Type tools –	(C4)
Time Series Basics – Data Ranges, Frequencies	5. Create visualization for statistical
and Shifting - WEB SCRAPING - Data Acquisition	distributions. (C4)
by Scraping web applications –Submitting a	6. Create visualization for maps,
form - Fetching web pages – Downloading web	Hierarchical data and network data. (C4)
pages through form submission – CSS Selectors	
- Data Visualization Tools	

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*	*		
Sessional Examination 2			*	*	*
Assignment/Presentation	*	*	*	*	*
End Semester Examination	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 HADOOP: The definitive Guide, Tom White 4th edition, O Reilly Publication Python for Data Analysis, Wes Mc Kinney, O Reilly Publication. Practical Data Science with R, Nina Zumel, John Mount, Manning Publications. Machine Learning, E. Alpaydin, MIT Press, 2010

Name of the Program: Master of Engineering - ME (Cloud Computing)		Master of Engineering - ME (Cloud Computing)			
Course Title:		Cloud Networks			
Course Code: CDC 604		Course Instructor:			
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2			
No of Credits:	3	Prerequisites: Networking Basics			
Synopsis:	This Course provides in	nsight on			
	1. Basic Network	ing Concepts.			
	2. Data centre terminologies.				
	3. Storage Area Network Concepts.				
	4. Software Defir	vare Defined Networks.			
Course					
Outcomes	On successful completion of this course, students will be able to				
(COs):					
CO 1:	Describe cloud netwo	rking components and terminologies, different networking			
CO 1.	types and OSI model				
CO 2:	Explain the concept of data centre planning and deployment				
CO 3:	Demonstrate the concept of storage area networks				
CO 4:	Explain the concept of software defined radios				
CO 5:	Explain the concept of	content delivery networks			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*								
CO 2		*		*							
CO 3	*		*	*							
CO 4		*		*							
CO 5	*		*	*							

Course content and outcomes:						
Content	Competencies					
Unit 1: Introduction to Networks						
Understanding the Cloud Network –	At the end of the topic student should be able to:					
Terminologies in Cloud – Components	1. Explain about cloud network terminologies and					
involved in cloud networking	components (C2)					
infrastructure – NaaS – SAN in cloud –	2. Describe the different layers of OSI model (C2)					
DATA Center – Deployment of a Data	3. Explain the different types of Networking in IEEE					
Center and factors affecting	standards (C2)					
Data Center Networking: Types of						
Networking – IEEE standard Layers of OSI						
Model – TCP – UDP - IPv4 and IPv6.						
Unit 2: Data Center Networking						
Introductions – Data Center Planning and	1. Describe about data center planning and					
Deployment – Cooling, Power and Air	deployment. (C2)					
Distribution –Server: Stand-alone, blades,	2. Write the significance of load balancing and					
stateless, clustering, scaling, optimization -	replication in data center. (C3)					
Infrastructure Protocols - Load Balancing –	3. Describe different data protection policies. (C2)					
Disaster Recovery- Inter-Data Center						
Networking Introduction to Business						
Continuity Local Replication and Remote						
Replication.						
Unit 3: Storage Area Networks						
Storage Systems - Information Storage -	1. Describe the architecture of a storage area					
Data Center Environment – DAS Data	network. (C2)					
Protection: RAID –Implementation – Array	2. Explain the operations of NAS. (C4)					
Components - Techniques Intelligent	3. Explain the concept and operation of CAS. (C4)					
Storage Systems Fibre Channel Storage -	4. Explain SCSI. (C2)					
NAS Backup, Archive and Replications						
Securing and Managing the storage						
Infrastructure CAS - Content-Addressed						
Storage Introduction to SCSI.						
Unit 4: Software Defined Radios						
Introduction to SDN – Centralized and	1. Describe SDN controllers. (C2)					
Distributed Control and Data Planes –SDN	2. Explain Network function virtualization. (C2)					
Controllers – SDN Solutions to Data Centre						
- Network Function Virtualization (NFV) –						
Use Cases.						
Unit 5: Content Delivery Networks						
CDN Models – CDN workflow – Publishing	1. Explain the CDN workflow. (C2)					
– Case Studies.	2. Write the significance of CDN model (C3)					

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with COs								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*						
Sessional Examination 2			*	*				
Assignment/Presentation	*	*	*	*	*			
End Semester Examination	*	*	*	*	*			

Feedback Process	End-Semester Feedback
Reference Material	 Rajkumar Buyya, Caesar Wu, Cloud Data Centers and Cost Modeling: A Complete Guide To Planning, Designing and Building a Cloud Data Center, Elseiver Thomas D. Nadeau, Ken Gray, SDN Software Defined Networks, O'Reilly Media William Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT, and CloudWith contributions by: Florence Agboma, British Sky Broadcasting, Sofiene Jelassi, Pearson Publications. Gilbert Held, A practical guide to content delivery networks, 2nd edition, CRC Press. Dom Robinson, Content delivery networks: fundamentals, design, and evolution. John Wiley & Sons. 2017.

Name of the F	Program:	Master of Engineering - ME (Cloud Computing)						
Course Title:		Cloud Security						
Course Code:	CDC 605	Course Instructor:						
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2						
No of Credits: 3		Prerequisites: Network security, Networking Basics						
Synopsis:	This Course provides in	sight on						
	1. Cryptographic	fundamentals like CIA triad, encryption standards, Key						
	management t	echniques, hashing.						
	2. Security Issues	to be considered in cloud architecture.						
	3. Design principl	es of cloud security.						
Course								
Outcomes	On successful completi	on of this course, students will be able to						
(COs):								
60.1	Identify fundamentals of cloud computing architectures based on current							
CO 1:	standards, protocols, and best practices.							
60 J.	Identify the known thre	eats, risks, vulnerabilities and privacy issues associated with						
0 2:	Cloud and evolve appropriate safeguards and countermeasures.							
	Design Cloud security architectures that assures secure isolation of compute							
60 3.	network and storage in	nfrastructures, comprehensive data protection, end-to-end						
CO 3:	identity and access	identity and access management, monitoring and auditing processes and						
	compliance with indust	try and regulatory mandates.						
CO 4	Cloud computing secu	rity guidelines set forth by ISO, NIST, ENISA and Cloud						
CU 4:	Security Alliance (CSA).							

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*		*						
CO 2	*	*								*	
CO 3	*	*	*	*	*					*	
CO 4	*										

Course content and outcomes:						
Content	Competencies					
Unit 1: Introduction to Security						
Need for Security, CIA triad, Services – Mechanisms and Attacks, Classic Encryption Techniques – Substitution cipher – Transposition cipher,	 At the end of the topic student should be able to: 1. Recognize the Need for Security, CIA triad, Services. (C2) 2. Practice Cryptographic Algorithms. (C3) 					
Modern Encryption Techniques, symmetric key, asymmetric key, PKI and Key Management, block cipher, stream cipher, Hashing.						
Unit 2: Introduction to Cloud Security						
Model for Network Security, Cloud security challenges, security models in clouds.	 Define Network Security, Cloud security challenges(C1) Classify security models in clouds(C2). 					
Unit 3: Security Design and Architecture for	r Cloud Computing					
Guiding Security design principles for Cloud Computing —Secure Isolation - Comprehensive data protection - End-to- end access control - Monitoring and auditing - CSA, NIST and ENISA guidelines for Cloud Security. Unit 4: Data Protection for Cloud Infra	 Analyze Security principles for cloud computing (C4) Demonstrating End-to-end access control - Monitoring and auditing(C3) structure and Services 					
Data Redaction, Tokenization, Obfuscation, Assuring data deletion - Data retention, deletion and archiving procedures for tenant data - Data Protection Strategies.	 Apply Data Redaction, Tokenization, Obfuscation, Assuring data deletion(C3) Identify Data Protection Strategies(C1) 					
Unit 5: Enforcing Access Control for Cloud I	nfrastructure based Services					
Common attack vectors and threats - Enforcing Access Control Strategies - Compute, Network and Storage - Authentication and Authorization - Roles- based Access Control, Multi-factor – authentication - Host, storage and network access control options - OS Hardening and minimization, securing remote - access, Verified and measured boot - Firewalls, IDS, IPS and honeypot.	 Discuss Common attack vectors and threats and Enforcing Access Control Strategies. (C2) Differentiate Authentication and Authorization (C4) Describe OS Hardening and minimization, securing remote - access, Verified and measured boot. (C1) 					

Unit 6: Monitoring, Auditing and Management						
Proactive activity monitoring, Incident	1.	Outline Proactive activity monitoring, Incident				
Response - Monitoring for unauthorized		Response Monitoring for unauthorized access,				
access, malicious traffic, abuse of system -		malicious traffic, abuse of system (C1)				
privileges, events and -alerts - Auditing –	2.	Distinguish Auditing – Record generation,				
Record generation, Reporting and		Reporting and Management (C2)				
Management - Tamper-proofing audit logs						
- Quality of Services - Secure Management						
- User management - Identity management						
- Security Information and Event						
Management.						
Unit 7: Cloud Computing Security Design Pa	tterns –	·I				
Security Patterns for Cloud Computing -	1.	Describe Security Patterns for Cloud				
Trusted Platform- Geo-tagging - Cloud VM		Computing -Trusted Platform- Geo-tagging -				
Platform Encryption - Trusted Cloud		Cloud VM Platform Encryption. (C1)				
Resource Pools - Secure Cloud Interfaces -	2.	Employ Trusted Cloud Resource Pools - Secure				
Cloud Resource Access Control - Cloud		Cloud Interfaces - Cloud Resource Access				
Data Breach Protection - Permanent Data		Control - Cloud Data Breach Protection (C3)				
Loss Protection - In-Transit Cloud Data						
Encryption.						
Unit 8: Cloud Computing Security Design Pa	tterns –	·				
Security Patterns for Cloud Computing –	1.	Classify Security Patterns for Cloud Computing				
Network Security, Identity & Access		– Network Security, Identity & Access				
Management & Trust - Secure On-Premise		Management & Trust - Secure On-Premise (C2)				
Internet Access - Secure External Cloud	2.	Paraphrase Cloud Denial-of-Service Protection				
Connection - Cloud Denial-of-Service		- Cloud Traffic Hijacking Protection -				
Protection - Cloud Traffic Hijacking		Automatically Defined Perimeter - Cloud				
Protection -Automatically Defined		Authentication Gateway - Federated Cloud				
Perimeter - Cloud Authentication Gateway		Authentication (C2)				
- Federated Cloud Authentication - Cloud						
Key Management - Trust Attestation						
Service - Collaborative Monitoring and						
Logging - Independent Cloud Auditing.						
Unit 9: Policy, Compliance & Risk Managem	ent in C	loud Computing				
Introduction to Legal, security, forensics,	1.	Define Legal, security, forensics, personal &				
personal & data - privacy issues within		data - privacy issues within Cloud				
Cloud environment - Cloud security		environment. (C1)				
assessment & audit reports - Laws &	2.	Interpret Cloud security assessment & audit				
regulatory mandates - Personal		reports - Laws & regulatory mandates .(C3)				
Identifiable Information & Data Privacy -						
Privacy requirements for Cloud computing						
(ISO 27018) - Metrics for Service Level						
Agreements (SLA) - Metrics for Risk						

Management:ENISA, NIST SP 800 ,PCI DSS,	
SAS 70 , CSA Security, Trust, and Assurance	
Registry (STAR)	

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with COs							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2			*				
Assignment/Presentation	*	*	*				
End Semester Examination	*	*	*	*			

Feedback Process **End-Semester Feedback** • Vic (J.R.) Winkler, Securing The Cloud: Cloud Computing Security • Techniques and Tactics, Syngress/Elsevier Thomas Erl, Cloud Computing Design Patterns, Prentice Hall, • • Lawrence C. Miller, CISSP, Network Security in Virtualized Data Centers For Dummies, John Wiley & Sons, 2012 DCIM For Dummies, Nlyte Special Edition, John Wiley & Sons Inc • **Reference Material** Raghu YeluriEnrique Castro-Leon, Building the Infrastructure for • Cloud Security A Solutions view, Apress, 2014 Helmut Krcmar, Ralf Reussner, Bernhard Rumpe (Editors), Trusted • Cloud Computing , Springer, 2014 William Stallings, Cryptography and network security: principles • and practice, - Prentice Hall – 2003 • Transaction papers, Blogs and White papers

Name of the P	rogram: Master of Engineering - ME (Cloud Computing)					
Course Title:	Cloud Database Management					
Course Code: (CDC 606 Course Instructor:					
Academic Yea	r: 2020-2021 Semester: First Year, Semester 2					
No of Credits:	3 Prerequisites: Familiarity in developing application using					
	any high level language					
Synopsis:	1. This course introduces the student to the concept of data management in the					
	applications developed for cloud technology					
	2. The course illustrates the evolution of database from file system to RDBMS					
	to NoSQL					
	3. Course focusses on topics related to design and usage of RDBMS, and No SQL					
	4. Bring awareness about distributed database system					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1·	Understand the concepts of DBMS, Relational data model, steps involved in design					
CO 1 .	the RDBMS system and No SQL system.					
<u> </u>	Demonstrate the design concepts and implement the database using the concepts if					
CO 2.	ER Diagram, logical design, SQL query execution and Query optimization techniques.					
CO 3·	Understand the principles of Distributed Databases, concept of No SQL and related					
	classifications and categories					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2					*						
CO 3	*	*									

Course content and outcomes:							
Content	Competencies						
Unit 1: Introduction							
Evolution of Database - Introduction to Cloud Database – Data Lake - Database as a Service – Type of Data w.r.t Big Data - Type of Cloud Databases – Introduction to NOSQL – NOSQL vs SQL – Structured, Semi structured, Unstructured data.	 At the end of the topic student should be able to: 1. Illustrate the evolution of database systems over the time and also look through the Big Data's perspective (C2) 						
Unit 2: Introduction to DBMS							
File Systems Organization - Sequential, Pointer, Indexed, Direct - Purpose of Database System- Database System Terminologies-Database characteristics- Data models – Types of data models – Components of DBMS- Relational Algebra. Logical database design: Relational DBMS - Codd's Rule - Entity-Relationship model - Extended ER Normalization – Functional Dependencies, Anomaly- 1NF to 5NF- Domain Key Normal	 Learn the basics of DBMS, DBMS based application design steps, ER Diagram(C2) Discuss the demonstrate the concepts of Normalization, Domain Constraints to be used on Logical model of Relational database, and SQL (C2) Introduce Query processing and query optimization techniques(C2,C4) Illustrate the key steps in design and developing the application using Database using decoupled layered approach for the Cloud operations (C4) 						
Form – Denormalization.							
Unit 3: SQL & Query Optimization							
SQL Standards - Data types - DatabaseObjects-DDL-DML-DCL-TCL-EmbeddedSQL-Static VsDynamic SQL - QueryOptimization:QueryProcessingandOptimization- HeuristicsEstimates in Query Optimization.	 Describe and Discuss SQL query processing steps and optimization approaches.(C2) 						
Unit 4: Transaction Processing and Concurre	ency Control						
Introduction-Properties of Transaction- Serializability- Concurrency Control – Locking Mechanisms- Two Phase Commit Protocol-Dead lock.	 Illustrate the necessity of Transaction management(C2). Define the locking mechanism used in concurrency control (C2) 						
Unit 5: Cloud Databases							
Types of NOSQL Databases - CAP Theorem - Key-value stores - Document stores - Column stores – Graph	 Discuss the Types of No SQL databases, CAP theorem and different categories on No SQL databases (C2) Design and Develop an application using the No SQL DB (C4) 						

Unit 6: Distributed Database System

Introduction to Distributed Database Systems – Concurrency – Implementation -Performance and security issues.

- 1. Outline Distributed Database Systems (C1)
- 2. Summarize the performance and security issues of distributed systems (C2)

Learning strategies, contact hours and student learning time							
Learning strategy	Contact hours	Student learning time (Hrs)					
Lecture	30	60					
Quiz	02	04					
Small Group Discussion (SGD)	02	02					
Self-directed learning (SDL)	-	04					
Problem Based Learning (PBL)	02	04					
Case Based Learning (CBL)	-	-					
Revision	02	-					
Assessment	06	-					
TOTAL	44	74					

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with COs							
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2		*	*				
Assignment/Presentation							
End Semester Examination	*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	 Abraham Silberschatz, Henry F. Korth and S. Sudharshan, Database System Concepts, Sixth Edition, Tata Mc Graw Hill, 2011. C.J.Date, A.Kannan and S.Swamynathan, An Introduction to Database Systems, Eighth, Edition, Pearson Education, 2006. Atul Kahate, Introduction to Database Management Systems, Pearson Education, New Delhi, 2006. Alexis Leon and Mathews Leon, Database Management Systems, Vikas Publishing House Private Limited, New Delhi, 2003. Raghu Ramakrishnan, Database Management Systems, Fourth Edition, Tata Mc Graw Hill, 2010. G.K.Gupta, Database Management Systems, Tata Mc Graw Hill, 2011. Rob Cornell, Database Systems Design and Implementation, Cengage Learning, 2011. John W. Rittinghouse, James F. Ransome, Cloud Computing: Implementation, Management, and Security, CRC Press, 2009 Lee Chao, Cloud Database Development and Management, Auerbach Publications, 2013 Pramod J Sadalage and Martin Fowler, NoSQL Distilled, Addison- Wesley Publisher, 2012. Ian Robinson , Jim Webber , Emil Elfrem, "Graph Databases",O'reilly Media, Articles, White papers and Transaction Papers

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Big Data and Data Visualization Lab				
Course Code:	BDA-614L	Course Instructor:				
Academic Yea	r: 2020-2021	Semester: First year, Semester 2				
No of Credits:	1	Prerequisites: Programming in Python or Java				
Synopsis:	1. Students learn	to handle big data in distributed computing architecture.				
	2. Installation and working on Hadoop and ecosystem					
	3. Build machine	learning Models				
	4. Processing of c	data stream				
	5. Choose proper	data visualization techniques				
Course						
Outcomes	On successful completi	on of this course, students will be able to				
(COs):						
CO 1:	Handle big data using Hadoop and its ecosystems.					
CO 2:	2: Building machine learning algorithm using Spark.					
CO 3:	Data Cleaning and Data Visualization.					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*	*					
CO 2	*	*	*	*	*	*			*	*	
CO 3	*	*	*	*	*	*		*			

Course content and outcomes:							
Content	Competencies						
Unit 1: Big Data							
Introduction to Hadoop.	At the end of the topic student should be able to:						
Data Analysis using Hadoop ecosystems	 Installation of Hadoop and Spark distributed systems. (C4) 						
	2. Reading and writing data into HDFS (C2).						
	3. Develop scripts to transfer structured data						
	from SQL database to HDFS. (C3)						
	4. Develop script to query the data from HDFS using Hive. (C4)						
Unit 2: Machine Learning							
Machine Learning in Big Data.	1. Design a model using K-means classifier to						
Stream processing in Big Data.	predict how well products are accepted by the clients (C4).						
	2. Develop applications using Stream processing						
	in big data (C4).						
Unit 3: Data Visualization							
Video encoding and processing	1. Design programs to dynamically extract data						
techniques.	from web. (C4)						
	2. Develop visualization application for time						
	series data. (C4)						
	 Develop visualization application for statistical distributions. (C4) 						
	4. Develop visualization application for maps,						
	Hierarchical data and network data. (C4)						

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3		
Sessional Examination 1	*	*			
Sessional Examination 2		*	*		
Assignment/Presentation	*	*	*		
Laboratory Examination	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	 T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2nd Edition, 2009 Machine Learning for Big Data, Jason Bell, Wiley Big Data Series Big Data: Principles and best practices of scalable real-time data systems - Nathan Marz and James Warren. Manning Publisher. Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale – Tom White, O'Reilly Publication 4th Edition. Spark: The Definitive Guide: Big Data Processing Made Simple – Bill Chambers, Matei Zaharia, O'Reilly Publication 1st Edition

Name of the P	e of the Program: Master of Engineering - ME (Cloud Computing)			
Course Title: Cloud Networks Lab		Cloud Networks Lab		
Course Code:	CDC-604L	Course Instructor:		
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2		
No of Credits:	1	Prerequisites: Basic understanding of Network concepts		
Synopsis:	This Course provides in	sight on		
	1. The basic unde	erstanding of cloud network concepts.		
	2. The basic knowledge about cloud data centre networking.			
	3. The understanding of Storage Area Networks.			
	4. The concept of Software defined Radios.			
	5. The knowledge about the content delivery networks.			
Course				
Outcomes	On successful completi	on of this course, students will be able to		
(COs):				
CO 1:	Illustrate cloud networking components, different networking types.			
CO 2:	Demonstrate the concept of storage area networks.			
CO 3:	Demonstrate the concept of software defined radios and content deliver networks.			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*			*						
CO 2	*		*								
CO 3	*				*						

Course content and outcomes:			
Content	Competencies		
Unit 1:			
Introduction to Networks	 At the end of the topic student should be able to: 1. Illustrate cloud network terminologies and components (C2) 2. Explain the different types of Networking in 		
	IEEE standards (C2)		
Unit 2:			
Storage Area Networks	1. Illustrate NAS architecture (C2)		
	2. Model Data protection policies (C2)		
Unit 3:			
Software Defined Radios and Content delivery network	1. Illustrate simple SDN architecture (C2)		

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	30	60			
Quiz	02	04			
Small Group Discussion (SGD)	02	02			
Self-directed learning (SDL)	-	04			
Problem Based Learning (PBL)	02	04			
Case Based Learning (CBL)	-	-			
Revision	02	-			
Assessment	06	-			
TOTAL	44	74			

Assessment Methods:				
Formative:	Summative:			
Internal practical Test	Sessional examination			
Theory Assignments	End semester examination			
Lab Assignment & Viva	Viva			

Mapping of assessment with COs				
Nature of assessment	CO 1	CO 2	CO 3	CO 4
Sessional Examination 1	*	*		
Sessional Examination 2			*	*
Assignment/Presentation		*		*
Laboratory Examination	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 Rajkumar Buyya, Caesar Wu, Cloud Data Centers and Cost Modeling: A Complete Guide To Planning, Designing and Building a Cloud Data Center, Elseiver Thomas D. Nadeau, Ken Gray, SDN Software Defined Networks, O'Reilly Media William Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud With contributions by: Florence Agboma, British Sky Broadcasting, Sofiene Jelassi, Pearson Publications. Gilbert Held, A practical guide to content delivery networks, 2nd edition, CRC Press. Dom Robinson, Content delivery networks: fundamentals, design, and evolution, John Wiley & Sons, 2017.

Name of the P	e of the Program: Master of Engineering - ME (Cloud Computing)			
Course Title:		Cloud Security Lab		
Course Code:	CDC-605L	Course Instructor:		
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2		
No of Credits:	1	Prerequisites: Network security, Networking Basics,		
		Programming Basics		
Synopsis:	This Course provides in	sight on		
	1. Cryptographic	fundamentals like CIA triad, encryption standards, Key		
	management t	echniques, hashing.		
	2. Security Issues	to be considered in cloud architecture.		
	3. Design principles of cloud security.			
Course				
Outcomes	omes On successful completion of this course, students will be able to			
(COs):				
Identify fundamentals of cloud computing architectures based o		s of cloud computing architectures based on current		
01.	standards, protocols, a	nd best practices.		
<u> </u>	Identify the known threats, risks, vulnerabilities and privacy issues associated with			
CO 2.	Cloud and evolve appropriate safeguards and countermeasures.			
	Design Cloud security architectures that assures secure isolation of compute,			
CO 2.	nfrastructures, comprehensive data protection, end-to-end			
CO 3.	identity and access	management, monitoring and auditing processes and		
compliance with industry and regulatory mandates.		try and regulatory mandates.		
Cloud computing secur		rity guidelines set forth by ISO, NIST, ENISA and Cloud		
	Security Alliance (CSA)			

Mapping	of COs	to POs									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*		*		*						
CO 2	*		*		*						
CO 3	*		*		*						
CO 4	*		*		*						

Course content and outcomes:			
Content	Competencies		
Unit 1: Monoalphabetic substitution ciphe	r		
Implementation of Monoalphabetic	At the end of the topic student should be able to:		
substitution cipher in Java/Python/C	1. Practice the Implementation of		
	Monoalphabetic substitution cipher. (C3)		
Unit 2: Caesurae cipher/Additive substitut	ion cipher		
Implementation of Caesurae	1. Practice the Implementation of Caesurae		
cipher/Additive substitution cipher in	cipher/Additive substitution cipher. (C3)		
Java/Python/C			
Unit 3: Brute Force Crypt Analysis of Caesu	urae Cipher		
Implementation of Brute Force Crypt	1. Practice the Implementation of Brute Force		
Analysis of Caesurae Cipher in	Crypt Analysis. (C3)		
Java/Python/C			
Unit 4: Play fair cipher			
Implementation of Play fair cipher in	1. Practice the Play fair cipher. (C3)		
Java/Python/C			
Unit 5: Vernam cipher			
Implementation of Vernam cipher in	1. Practice the Implementation of Vernam		
Java/Python/C	cipher. (C3)		
Unit 6: Hill cipher			
Implementation of Hill cipher in	1. Practice the Implementation of Hill cipher.		
Java/Python/C	(C3)		

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:	
Formative:	Summative:
Internal practical Test	Sessional examination
Theory Assignments	End semester examination
Lab Assignment & Viva	Viva

Mapping of assessment with COs							
Nature of assessment	CO 1	CO 2	CO 3	CO 4			
Sessional Examination 1	*	*					
Sessional Examination 2			*				
Assignment	*	*	*				
Laboratory examination	*	*	*	*			

Feedback Process	End-Semester Feedback
	References:
	• Vic (J.R.) Winkler, Securing The Cloud: Cloud Computing Security
	Techniques and Tactics, Syngress/Elsevier
	Thomas Erl, Cloud Computing Design Patterns, Prentice Hall,
	Lawrence C. Miller, CISSP, Network Security in Virtualized Data
	Centers For Dummies, John Wiley & Sons, 2012
Poforonco Matorial	DCIM For Dummies, Nlyte Special Edition, John Wiley & Sons Inc
Reference Materia	Raghu YeluriEnrique Castro-Leon, Building the Infrastructure for
	Cloud Security A Solutions view, Apress, 2014
	Helmut Krcmar, Ralf Reussner, Bernhard Rumpe(Editors), Trusted
	Cloud Computing , Springer, 2014
	William Stallings, Cryptography and network security: principles
	and practice, - Prentice Hall – 2003
	Transaction papers, Blogs and White papers

Name of the F	Program:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Cloud Database Management Lab				
Course Code:	CDC-606L	Course Instructor:				
Academic Yea	r: 2020-2021	Semester: First Year, Semester 2				
No of Credits:	1	Prerequisites: Familiarity in developing application using				
		any high level language				
Synopsis:	1. This course int	troduces the student to the concept of data management in				
	the application	ns developed for cloud technology				
	2. The course illu	strates the evolution of database from file system to RDBMS				
	to NoSQL					
	3. Course focuss	es on topics related to design and usage of RDBMS, and No				
	SQL					
	4. Bring awarene	ess about distributed database system				
Course						
Outcomes	On successful complet	ion of this course, students will be able to				
(COs):						
CO 1·	Demonstrate the con	cepts of DBMS, Relational data model, steps involved in				
design the RDBMS system and No SQL system.						
	Demonstrate the design concepts and implement the database using the concepts					
CO 2:	if ER Diagram, logica	al design, SQL query execution and Query optimization				
	techniques.					
	Illustrate the concept	of No SQL and related classifications and categories and				
CO 3:	Demonstrate the usage of knowledge through Application development using					
	database.					

Mapping	of COs	to POs									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1			*		*						
CO 2			*	*							
CO 3				*					*		

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction	
Unit 1: Introduction Evolution of Database - Introduction to Cloud Database – Data Lake - Database as a Service – Type of Data w.r.t Big Data - Type of Cloud Databases – Introduction to NOSQL – NOSQL vs SQL – Structured, Semi structured, Unstructured data. Unit 2: Introduction to DBMS File Systems Organization - Sequential, Pointer, Indexed, Direct - Purpose of Database System- Database System Terminologies -Database characteristics- Data models – Types of data models – Components of DBMS - Relational Algebra. Logical database design: Relational DBMS - Codd's Rule - Entity- Relationship model - Extended ER	At the end of the topic student should be able to: 1. Set up DB and set database tables. (C3). 1. Design the application involving database and try JDBC (tool used for Java or equivalent technique for other language) to connect to database through application (C4)
Normalization – Functional Dependencies, Anomaly- 1NF to 5NF- Domain Key Normal Form – Denormalization.	
Unit 3: SQL & Query Optimization	
SQL Standards - Data types - Database Objects- DDL-DML-DCL-TCL-Embedded SQL-Static Vs Dynamic SQL - Query Optimization: Query Processing and Optimization - Heuristics and Cost Estimates in Query Optimization.	 Execute basic queries and optimized queries (C3) Develop the team with different modules / layer assigned to each member – namely control layer, business layer, data layer and assign appropriate tasks – to develop the loosely coupled application for cloud (C4)
Unit 4: Transaction Processing and Concu	rrency Control
Introduction-Properties of Transaction- Serializability- Concurrency Control – Locking Mechanisms- Two Phase Commit Protocol-Dead lock.	 Review the execution plan provided by the DB client for the SQL query execution (C4)
Unit 5: Cloud Databases	
Types of NOSQL Databases - CAP Theorem - Key-value stores - Document stores - Column stores – Graph	 Setup and install the No SQL - (MongoDB)(C3) Practice basic queries to interact with No SQL DB

Unit 6: Distributed Database Systems

Introduction	to	Distributed	Database	1.	Explore	switch	between	RDBMS	and
Systems – Concurrency – Implementation				MongoD	B (C4)				
- Performance and security issues.									

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with COs			
Nature of assessment	CO 1	CO 2	CO 3
Sessional Examination 1	*		
Sessional Examination 2		*	*
Assignment/Presentation			
Laboratory examination	*	*	*

Feedback Process	End-Semester Feedback
Feedback Process	 End-Semester Feedback Abraham Silberschatz, Henry F. Korth and S. Sudharshan, Database System Concepts, Sixth Edition, Tata Mc Graw Hill, 2011. C.J.Date, A.Kannan and S.Swamynathan, An Introduction to Database Systems, Eighth, Edition, Pearson Education, 2006. Atul Kahate, Introduction to Database Management Systems, Pearson Education, New Delhi, 2006. Alexis Leon and Mathews Leon, Database Management Systems, Vikas Publishing House Private Limited, New Delhi, 2003. Raghu Ramakrishnan, Database Management Systems, Fourth Edition, Tata Mc Graw Hill, 2010. G.K.Gupta, Database Management Systems, Tata Mc Graw Hill, 2011. Rob Cornell, Database Systems Design and Implementation, Cengage Learning, 2011. John W. Rittinghouse, James F. Ransome, Cloud Computing: Implementation, Management, and Security, CRC Press, 2009 Lee Chao, Cloud Database Development and Management, Auerbach Publications, 2013 Pramod J Sadalage and Martin Fowler, NoSQL Distilled, Addison- Wesley Publisher, 2012.
	 Ian Robinson , Jim Webber , Emil Elfrem, "Graph Databases", O'reilly Media, Articles, White papers and Transaction Papers
	- Articles, white papers and transaction rapers

Name of the Program:		Master of Engineering - ME (Cloud Computing)						
Course Title:		Machine Learning for Big Data						
Course Code:	BDA 605	Course Instructor:						
Academic Yea	ar: 2020 - 2021	Semester: First Year, Semester 2						
No of Credits	:3	Prerequisites: Programming with Python and Data						
		Visualization						
Synopsis:	This Course provides in	sight on						
	1. This course pr	ovide the concept of neurons and biological motivation,						
	activation fund	ctions and threshold units, supervised and unsupervised						
	learning, perce	ptron network models in Artificial Neural Networks.						
	2. This course pro	ovide the knowledge about learning from unclassified data						
	using clustering	g techniques.						
	3. This course pro	wide the concept of Support Vector Machines for linear and						
	non-linear class	sification.						
	4. This course provide the concept of Deep Learning and de							
	convolutional n	neural network for Deep Learning.						
	5. This course provide the knowledge about the applications and design of							
	Reinforcement	Learning algorithms.						
Course								
Outcomes	On successful completion	on of this course, students will be able to						
(COs):								
	Describe activation fun	ictions, weights and threshold units used in artificial neural						
CO 1:	networks, supervised a	nd unsupervised learning, gradient descent approach, types						
	of perceptron models, o	overfitting						
CO 2:	Explain the concept c	of hierarchical clustering and non-hierarchical clustering,						
	support vector machine, deep neural networks and reinforcement learning							
CO 3·	Demonstrate artificial	neural network models, clustering models, support vector						
	classifier models, Deep learning models and reinforcement learning models							
CO 4:	Compare and contrast single layer, multilayer and deep neural networks in terms							
	of accuracy in classification							
	Design back propagation	on neural network, K-means and agglomerative clustering,						
CO 5:	deep neural network,	reinforcement learning models and selection of a machine						
	learning algorithm for the given data analysis.							

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:	
Content	Competencies
Unit 1: Artificial Neural Networks	
Neurons and biological motivation,	At the end of the topic student should be able to:
Activation functions and threshold units,	1. Relate biological neurons with artificial neurons
Supervised and unsupervised learning,	and the motivation for ANN development. (C1)
Perceptron Model: representational	2. Distinguish Supervised and unsupervised
limitation and gradient descent training,	learning (C2).
Multilayer networks and back	3. Describe about error reduction techniques in
propagation, Overfitting	used Artificial Neural Networks based
	learning (C2)
	4. Write the usability of different activation
	functions for ANN learning system. (C3)
	5. Describe the architecture of various
	perceptron networks. (C2)
Unit 2: Clustering	
Learning from unclassified data,	1. Write the different methods of learning from
Clustering. Hierarchical Agglomerative	unclassified data (C3).
Clustering, Non- Hierarchical Clustering -	2. Explain the operations
k-means partitional clustering,	of various clustering models in machine
Expectation maximization (EM) for soft	learning (C5)
clustering, Semi-supervised learning with	3. Describe the methods used for measuring
EM using labelled and unlabelled data.	dissimilarity between two clusters. (C2)
	4. Apply clustering techniques for data analysis.
	(C3)
Unit 3: Kernel Methods	
Dual Representations, Design of Kernels.	1. Describe Dual Representations. (C2)
	2. Explain the Kernel trick for learning non-linear
	functions (C5)

Unit 4: Support Vector Machines (SMV)		
Maximum margin linear separators,	1.	Describe about Maximum Margin and Support
Quadratic programming solution to	2.	Vector Machine. (C2)
finding maximum margin separators,	3.	Examine the advantages of maximum margin
Kernels for learning non-linear functions,		linear separators technique in SVM (C4)
Varying length pattern classification	4.	Explain the Kernel trick for learning non-linear
using SVM		functions (C5)
	5.	Show the relation between two forms of
		representation of a hyperplane (C3)
Unit 5: Deep Learning		
Introduction to Deep Learning,	1.	Define Deep Learning. (C1)
Introduction to convolutional Neural	2.	Describe the applications of deep learning.
Network (CNN), CNN Architecture and		(C2)
layers, Building simple CNN model for	3.	Explain the architecture of Deep Neural
classification, Training and Testing the		Network and CNN (C5)
CNN model	4.	Design a classifier for the image classification
		system. (C5)
Unit 6: Reinforcement Learning		
Characteristics, N-arm Bandit Problem,	1.	Explain the concept of Multi-Armed Bandit
Calculating the Value Function,		Problem (MABP). (C2)
Associative Learning – Adding States, The	2.	Write the functions of Upper Confidence Bound
Markov Property & Markov Decision		(UCB) algorithm. (C3)
Process	3.	Outline the learning process
		and characteristics of reinforcement learning.
		(C4)
	4.	Explain about Markov decision process. (C5)

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	30	60				
Quiz	02	04				
Small Group Discussion (SGD)	02	02				
Self-directed learning (SDL)	-	04				
Problem Based Learning (PBL)	02	04				
Case Based Learning (CBL)	-	-				
Revision	02	-				
Assessment	06	-				
TOTAL	44	74				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with COs								
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5			
Sessional Examination 1	*	*	*		*			
Sessional Examination 2	*	*	*	*	*			
Assignment/Presentation	*	*	*	*	*			
End Semester Examination	*	*	*	*	*			

Feedback Process	End-Semester Feedback
	• T. Mitchell, "Machine Learning", McGraw-Hill, 1997.
	E. Alpaydin, "Machine Learning", MIT Press, 2010.
	• C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
	 R. Duda, E. Hart, and D. Stork, "Pattern Classification", Wiley Interscience, 2000.
	 Satish Kumar, "Neural Networks - A Class Room Approach", Second Edition, Tata McGraw-Hill, 2013.
Reference Material	1. T. Hastie, R. Tibshirani and J. Friedman," The Elements of Statistical Learning: Data Mining", Inference and Prediction, Springer, 2nd Edition 2009
	 Jason Bell, "Machine Learning for Big Data", Wiley Big Data Series, 2016.
	 J. Shawe-Taylor and N. Cristianini, "Kernel Methods for Pattern Analysis", Cambridge University Press, 2004.
	 S. Haykin, "Neural Networks and Learning Machines", Prentice Hall of India, 2010.
	 Rama Murthy G, "Multidimensional Neural Networks Unified Theory", New Age International, 2008.
	11. F. Camastra and A. Vinciarelli, "Machine Learning for Audio, Image and Video Analysis – Theory and Applications", Springer, 2008.

Name of the	Program:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Entrepreneurship				
Course Code: ENP 601		Course Instructor:				
Academic Ye	ar: 2020 - 2021	Semester: First Year, Semester 2				
No of Credits	:: 3	Prerequisites:				
Synopsis:	This course introduc	es students to the theory of entrepreneurship and its				
	practical implementa	ation. It focuses on different stages related to the				
	entrepreneurial proc	ess, including business model innovation, monetization,				
	small business manag	gement as well as strategies that improve performance of				
	new business venture	es. Cantered on a mixture of theoretical exploration as well				
	as case studies of rea	I-world examples and guest lectures, students will develop				
	an understanding of successes, opportunities and risks of entrepreneurship. T					
	course has an interdis	sciplinary approach and is therefore open to students from				
	other Majors.					
Course						
Outcomes	On successful completion of this course, students will be able to:					
(COs):						
CO 1·	To impart knowledge on the basics of entrepreneurial skills and competencies to					
CO 1.	provide the participants with necessary inputs for creation of new ventures.					
<u> </u>	To familiarize the part	icipants with the concept and overview of entrepreneurship				
02.	with a view to enhance entrepreneurial talent					
CO 3:	To appraise the entrepreneurial process starting with pre-venture stage					
CO 4:	To Create and exploit innovative business ideas and market opportunities					
CO F:	focusing on developing novel and unique approaches to					
CO 5:	market opportunities					
CO 61	To explore new vist	as of entrepreneurship in 21st century environment to				
	generate innovative business ideas through case studies.					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2				*							
CO 3			*								
CO 4						*					
CO 5								*			
CO 6										*	

Course content and outcomes:							
Content	Competencies						
Unit 1: Introduction to Entrepreneurship							
Meaning and Definition of	At the end of the topic student should be able to:						
Entrepreneurship-Employment vs	1. Explain the meaning of Entrepreneurship (C1)						
Entrepreneurship, Theories of	2. Discuss the theories of Entrepreneurship (C1)						
Entrepreneurship, approach to	3. Discuss the approaches to Entrepreneurship (C1)						
entrepreneurship, Entrepreneurs VS							
Manager							
Unit 2: Entrepreneurial Traits							
Personality of an entrepreneur, Types of	1. Discuss the Personality traits of entrepreneurs.						
Entrepreneurs	(C2)						
Unit 3: Process of Entrepreneurship							
Factors affecting Entrepreneurship process	1. Identify the fundamentals and responsibilities of						
	entrepreneurship (C2)						
	2. Exemplify one's capabilities in relation to the						
	rigors of successful ventures (C3)						
	3. Identify and differentiates the different						
	characteristics and competencies of an						
	entrepreneurs (C2)						
Unit 4: Business Start-up Process	1						
Idea Generation, Scanning the	1. Explain the Process of Business start up (C1)						
Environment, Macro and Micro analysis	2. Develop creativity and critical thinking in						
	identifying opportunities (C5)						
	3. Apply innovative approaches in envisioning ones						
	entrepreneurial career (C3)						
Unit 5: Business Plan writing							
Points to be considered, Model Business	1. Identify different business models (C3)						
plan	2. Describe different parts of a business plan(C2)						
Unit 6: Case studies							
Indian and International Entrepreneurship	1. Perform self-assessment and analyse						
	entrepreneurial personal traits and competencies						
	(C4)						
	2. Evaluate oneself and plan courses of action to help						
	develop one's entrepreneurial characteristics and						
	competencies. (C5)						

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with C	Os					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	C0 6
Sessional Examination 1	*	*				
Sessional Examination 2			*	*		
Assignment/Presentation					*	*
End Semester Examination	*	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	 NVR Naidu and T. Krishna Rao, "Management and Entrepreneurship", IK International Publishing House Pvt. Ltd 2008. Mohanthy Sangram Keshari, "Fundamentals of Entrepreneurship", PHI Publications, 2005 Butler, D. (2006). Enterprise planning and development. USA: Elsevier Ltd. Gerber, M.E. (2008) Awakening the entrepreneur within. NY: Harper Collins.

Name of the P	Program: Master of Engineering - ME (Cloud Computing)				
Course Title:		IT Project Management			
Course Code: CSE 631		Course Instructor:			
Academic Year: 2020 – 2021		Semester: First Year, Semester 2			
No of Credits:	3	Prerequisites: Familiarity in developing application using any			
		high level language			
Synopsis:	This Course provides ins	ight on			
	1. The concept of s	software development process and project management			
	2. Illustrates the difference between a lab assignment and group project				
	3. Help the students to understand the finer points of Project management				
	4. Bring awareness about the processes, tools and techniques involved in the field				
	of IT project management				
Course					
Outcomes	On successful completic	on of this course, students will be able to			
(COs):					
CO 1:	Illustrate the importance of project planning.				
Discuss and demonstrate various tools applicable for different phases of the softw					
	project.				
CO 3:	Illustrate the importance of Change management.				

Mapping	of COs	to POs									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*									
CO 2		*	*								
CO 3	*		*								

Course content and outcomes:				
Content	Competencies			
Unit 1: Software Project Planning				
Understand the Project Needs, Create the	At the end of the topic student should be able to:			
Project Plan, Diagnosing Project Planning	1. Understand the project needs, necessity of plan,			
Problems	Define the Project Plan, Diagnosing Project			
	Planning Problems (C1)			
Unit 2: Estimation				
Elements of a Successful Estimate,	1. List the importance of estimation and describe			
Wideband Delphi Estimation, Other	different estimation techniques (C2)			
Estimation Techniques, Diagnosing	2. Discuss the significance of Reviews and different			
Estimation Problems.	review techniques (C2)			
Unit 3: Project Schedules				
Building the Project Schedule, Managing	1. Outline the steps in building project schedule.(C1)			
Multiple Projects, Use the Schedule to	2. Indicate mechanism of managing multiple			
Manage Commitments, Diagnosing	projects. (C2)			
Scheduling Problems.				
Unit 4: Reviews				
Inspections, Deskchecks, Walkthroughs,	1. Discuss the significance of Reviews and different			
Code Reviews, Pair Programming, Use	review techniques (C2)			
Inspections to Manage Commitments,				
Diagnosing Review Problems.				
Unit 5: Software Requirements				
Requirements Elicitation, Use Cases,	1. Introduce to requirement elicitation techniques,			
Software Requirements Specification,	design and demonstrate the requirement			
Change Control, Introduce Software	documentation by field visits(C2)			
Requirements Carefully, Diagnosing				
Software Requirements Problems				
Unit 6: Design and Programming				
Review the Design, Version Control with	1. Illustrate the key steps in design and programming			
Subversion, Refactoring, Unit Testing, Use	phase. Version control and unit testing			
Automation, Be Careful with Existing	significance (C3)			
Projects, Diagnosing Design and				
Programming Problems				
Unit 7: Software Testing				
Test Plans and Test Cases, Test Execution,	1. Define the test plans, significance of test phase			
Defect Tracking and Triage, Test	and the test case characteristics. Introduce			
Environment and Performance Testing,	different types testing and significance of type of			
Smoke Tests, Test Automation,	testing.(C2)			
Postmortem Reports. Using Software				

Testing Effectively, Diagnosing Software	
Testing Problems	
Unit 8: Understanding Change	
Why Change Fails, How to Make Change	1. Illustrate the necessity of Change management
Succeed	system – developing impact analysis document
	and its importance (C3).
Unit 9: Management and Leadership	
Take Responsibility, Do Everything Out in	1. Understand the role of management in motivating
the Open, Manage the Organization,	the team, finer points of managing the team (C2)
Manage Your Team	
Unit 10: Managing an Outsourced Project	
Prevent Major Sources of Project Failure,	1. Describe the differences of managing the
Management Issues in Outsourced	outsourced project, typical point of conflicts(C2)
Projects, Collaborate with the Vendor	2. Review of the project management process (C2)
Unit 10: Process Improvement	
Life Without a Software Process, Software	1. Analyse the projects without process and
Process Improvement, Moving Forward	continuous process improvements initiatives
	needed for success of the project (C4)

Learning strategies, contact hours and student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	30	60		
Quiz	02	04		
Small Group Discussion (SGD)	02	02		
Self-directed learning (SDL)	-	04		
Problem Based Learning (PBL)	02	04		
Case Based Learning (CBL)	-	-		
Revision	02	-		
Assessment	06	-		
TOTAL	44	74		

Assessment Methods:			
Formative:	Summative:		
Internal practical Test	Sessional examination		
Theory Assignments	End semester examination		
Lab Assignment & Viva	Viva		

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Sessional Examination 1	*	*			
Sessional Examination 2	*		*		
Assignment/Presentation	*	*			
End Semester Examination	*	*	*		

Feedback Process	End-Semester Feedback
Reference Material	 "Applied Software Project Management" By Jennifer Greene, Andrew Stellman (O'Reilly Publications) 2005. "The Art of Project Management" By Scott Berkun (O'Reilly Publications) 2005.

me of the Program: Master of Engineering - ME (Cloud Computing)				
	Machine Learning for Big Data Lab			
: BDA-605L	Course Instructor:			
ar: 2020-2021	Semester: First Year, Semester 2			
:: 1	Prerequisites: Programming with Python and Data			
	Visualization			
This Course provides in	sight on			
On successful completi	on of this course, students will be able to			
Demonstrate activatior	n functions, weights and threshold units in artificial neural			
networks				
Demonstrate Artificial	Neural Network, Clustering, Support Vector Machine, Deep			
Neural Network and Re	inforcement Learning models			
Analyse Artificial Neura	al Network, Clustering, Support Vector Machine, Deep Neural			
Network and Reinforcement Learning models				
Compare and contrast	single layer, multilayer and deep neural networks in terms of			
accuracy in classificatio	n			
Design different types	of artificial neural network models, clustering models, deep			
neural network models	reinforcement learning models			
	Program: BDA-605L ar: 2020-2021 :: 1 This Course provides in On successful completi Demonstrate activation networks Demonstrate Artificial Neural Network and Re Analyse Artificial Neura Network and Reinforce Compare and contrast accuracy in classificatio Design different types neural network models			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							

Course content and outcomes:						
Content	Compe	tencies				
Unit 1: Artificial Neural Networks						
Neurons and biological motivation.	At the e	end of the topic student should be able to:				
Activation functions and threshold units.	1.	Demonstrate activation functions, weights and				
Supervised and unsupervised learning		threshold units in artificial neural networks (C3)				
Perceptron Model: representational	I 2.	Demonstrate ANN models (C3)				
limitation and gradient descent training.	3.	Design of ANN models for classification (C5)				
Multilayer networks and back propagation.	4.	Analyse the performance issues (C4)				
Overfitting.						
Unit 2: Clustering						
Learning from unclassified data Clustering.	. 1.	Demonstrate various clustering models in				
Hierarchical Aglomerative Clustering.		machine learning (C3)				
Non-Hierarchical Clustering- k-means	s 2.	Design different types of clusters (C5)				
partitional clustering.	3.	Analyse the performance of clustering				
Expectation maximization (EM) for soft		techniques on different data (C4)				
clustering.	4.	Apply clustering techniques for data analysis.				
Semi-supervised learning with EM	I	(C3)				
using labeled and unlabled data.						
Unit 3: Kernel Methods						
Dual Representations . Design of Kernels	1.	Design of different kernel techniques (C5)				
Unit 4: Support Vector Machines (SMV)						
Maximum margin linear separators.	1.	Demonstrate Maximum margin linear				
Quadractic programming solution to finding	5	separators. (C3)				
maximum margin separators.	2.	Design SVM classifiers (C5)				
Kernels for learning non-linear functions.	3.	Analyse the performance of SVM (C4)				
Varying length pattern classification using	5					
SVM						
Unit 5: Deep Learning						
Introduction to Deep Learning	1.	Develop Deep Neural Network/ CNN (C5)				
Introduction to convolutional Neural	1 2.	Design a classifier for the image classification				
Network (CNN)		system. (C5)				
CNN Architecture and layers	3.	Compare performance of CNN and ANN for				
Building simple CNN model for classification		image classification (C4)				
Training and Testing the CNN model						
Unit 6: Reinforcement Learning						
Characteristics, N-arm Bandit Problem	1.	Apply reinforcement learning model using				
Calculating the Value Function		different principles (C3)				
Associative Learning – Adding States	2.	Analyse various reinforcement learning				
The Markov Property & Markov Decision	1	techniques (C4)				
Process	3.	Design of reinforcement learning models (C5)				

Learning strategies, contact hours and student learning time					
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			
TOTAL	48	-			

Assessment Methods:					
Formative:	Summative:				
Internal practical Test - yes	Sessional examination				
Theory Assignments	End semester examination - yes				
Lab Assignment & Viva - yes	Viva				

Mapping of assessment with COs									
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5				
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation			*	*	*				
Laboratory examination			*	*	*				

Feedback Process	End-Semester Feedback
Reference Material	 Machine Learning, T. Mitchell, McGraw-Hill, 1997 Machine Learning, E. Alpaydin, MIT Press, 2010 Pattern Recognition and Machine Learning, C. Bishop, Springer, 2006 Pattern Classification, R. Duda, E. Hart, and D. Stork, Wiley-Interscience, 2000 Neural Networks - A Class Room Approach, Satish Kumar, Second Edition, Tata McGraw-Hill, 2013 The Elements of Statistical Learning: Data Mining, Inference and Prediction, T. Hastie, R. Tibshirani and J. Friedman, Springer, 2nd Edition, 2009 Machine Learning for Big Data, Jason Bell, Wiley Big Data Series Kernel Methods for Pattern Analysis, J. Shawe-Taylor and N. Cristianini, Cambridge University Press, 2004 Neural Networks and Learning Machines, S. Haykin, Prentice Hall of India, 2010 Multidimensional Neural Networks Unified Theory, Rama Murthy G F.Camastra and A.Vinciarelli, Machine Learning for Audio, Image and Video Analysis – Theory and Applications, Springer, 2008

Name of the Program:		Master of Engineering - ME (Cloud Computing)		
Course Title:		Entrepreneurship Lab		
Course Code:	ENP-601L	Course Instructor:		
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2		
No of Credits:	1	Prerequisites: -		
Synopsis:	1. This course in	troduces students to the theory of entrepreneurship and its		
	practical imple	mentation.		
	2. It focuses on	different stages related to the entrepreneurial process,		
	including bus	iness model innovation, monetization, small business		
	management	as well as strategies that improve performance of new		
	business ventu	ires.		
	3. Cantered on a	mixture of theoretical exploration as well as case studies of		
	real-world ex	amples and guest lectures, students will develop an		
	understanding	of successes, opportunities and risks of entrepreneurship.		
4. This course ha		s an interdisciplinary approach and is therefore open to		
	students from other Majors.			
Course				
Outcomes	On successful complet	ion of this course, students will be able to		
(COs):				
CO 1:	Understand the concept of entrepreneurship			
To appraise the entrep		preneurial process starting with pre-venture stage through		
CO 2.	group discussion			
To Build a mind-set focusing on developing novel and unique approaches to		cusing on developing novel and unique approaches to market		
CO 3:	opportunities by cons	idering case studies and understand the complete flow of		
	entrepreneurship			

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*					*		*			
CO 2						*					
CO 3								*		*	

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction to Entrepreneurship	
Meaning and Definition of	At the end of the topic student should be able to:
Entrepreneurship-Employment vs	1. Discuss the theories of Entrepreneurship (C1)
Entrepreneurship, Theories of	2. Discuss the approaches to Entrepreneurship
Entrepreneurship, approach to	(C1)
entrepreneurship, Entrepreneurs VS	
Manager	
Unit 2: Process of Entrepreneurship	
Factors affecting Entrepreneurship process	1. Exemplify one's capabilities in relation to the
	rigors of successful ventures (C3)
	2. Identify and differentiates the different
	characteristics and competencies of an
	entrepreneurs (C2)
Unit 3: Business Plan writing	
Points to be considered, Model Business	1. Identify different business models (C3)
plan	2. Describe different parts of a business plan(C2)
Unit 4: Case studies	
Indian and International Entrepreneurship	1. Perform self-assessment and analyse
	entrepreneurial personal traits and
	competencies (C4)
	2. Evaluate oneself and plan courses of action to
	help develop one's entrepreneurial
	characteristics and competencies. (C5)

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:					
Formative:	Summative:				
Internal practical Test	Sessional examination				
Theory Assignments	End semester examination				
Lab Assignment & Viva	Viva				

Mapping of assessment with Cos									
Nature of assessment	CO 1	CO 2	CO 3						
Sessional Examination 1	*	*							
Sessional Examination 2			*						
Assignment/Presentation		*	*						
Laboratory Examination	*	*	*						

Feedback Process	•		Mid-S	Mid-Semester feedback							
	•		End-Se	d-Semester Feedback							
Reference Material		1.	NVR	Naidu	and	Т.	Krishna	Rao,	"Management	and	
			Entrep	Entrepreneurship", IK International Publishing House Pvt. Ltd 2008.							
		2.	Mohanthy Sangram Keshari, "Fundamentals of Entrepreneurship",								
			PHI Ρι	PHI Publications, 2005							
		З.	Butler	Butler, D. (2006). Enterprise planning and development. USA:							
			Elsevie	Elsevier Ltd. Gerber, M.E. (2008) Awakening the entrepreneur							
			within	n. NY: Har	per Co	llins.					

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)				
Course Title:		IT Project Management Lab				
Course Code: CSE-631L		Course Instructor:				
Academic Year: 2020 - 2021		Semester: First Year, Semester 2				
No of Credits: 1		Prerequisites: Familiarity in developing application using				
		any high level language				
Synopsis:	This Course provides insight on					
	1. The concept of software development process and project management					
	2. Illustrates the difference between a lab assignment and group project					
	3. Help the studen	ts to understand the finer points of Project management				
	4. Bring awareness	s about the processes, tools and techniques involved in the				
	field of IT projec	t management.				
Course						
Outcomes	On successful completio	on of this course, students will be able to				
(COs):						
CO 1:	Practice the project deve	elopment through project planning.				
CO 2:	Understand the finer points of Project management.					
<u> </u>	Bring awareness about t	he processes, tools and techniques involved in the field of IT				
CO 3.	project management.					

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1			*	*							
CO 2					*				*		
CO 3			*		*						

Course content and outcomes:								
Content	Competencies							
Unit 1: Software Project Planning								
Understand the Project Needs, Create the Project Plan, Diagnosing Project Planning Problems.	At the end of the topic student should be able to: 1. Discussion on tools needed for project management (C3)							
Unit 2: Estimation								
Elements of a Successful Estimate, Wideband Delphi Estimation, Other Estimation Techniques, Diagnosing Estimation Problems.	 Download and demonstrate the tools typically used for UML design. (C3) 							
Unit 3: Project Schedules								
Building the Project Schedule, Managing Multiple Projects, Use the Schedule to Manage Commitments, Diagnosing Scheduling Problems.	 Design the application through the UML tool practiced (C4) Develop the team with different roles assigned to each member – namely project manager, developer, tester and assign appropriate tasks (C4) 							
Unit 4: Reviews								
Inspections, Deskchecks , Walkthroughs, Code Reviews, Pair Programming, Use Inspections to Manage Commitments, Diagnosing Review Problems.	 Develop basic set of programs and to illustrate the unit tests (C2) 							
Unit 5: Software Requirements								
Requirements Elicitation, Use Cases, Software Requirements Specification, Change Control, Introduce Software Requirements Carefully, Diagnosing Software Requirements Problems	 Field visit to develop and practice the requirement elicitation (C3) 							
Unit 6: Design and Programming								
Review the Design, Version Control with Subversion, Refactoring, Unit Testing, Use Automation, Be Careful with Existing Projects, Diagnosing Design and Programming Problems	 Illustrate the key steps in design and programming phase. Version control and unit testing significance (C3) Review of various artefacts generated by project and revise the project management methodology to the team (C5) 							
Unit 7: Software Testing	·							
Test Plans and Test Cases, Test Execution, Defect Tracking and Triage, Test Environment and Performance Testing, Smoke Tests, Test Automation,	 Inter team testing set up based on requirement document(C5) 							

Postmortem Reports, Using Software	
Testing Effectively, Diagnosing Software	
Testing Problems	
Unit 8: Understanding Change	
Why Change Fails, How to Make Change	1. Illustrate the necessity of Change management
Succeed	system – SVN hands on (C3).
Unit 9: Management and Leadership	
Take Responsibility, Do Everything Out in	2. Discussion on the topic with the help of case
the Open, Manage the Organization,	study (C3)
Manage Your Team	
Unit 10: Managing an Outsourced Project	
Prevent Major Sources of Project Failure,	1. Discussion on the topic with the help of case
Management Issues in Outsourced	study (C3)
Projects, Collaborate with the Vendor	
Unit 11: Process Improvement	
Life Without a Software Process, Software	1. Post-mortem report generation of respective
Process Improvement, Moving Forward	project by each team – review of the report
	and suggest areas of improvement (C4)

Learning strategies, contact hours and student learning time								
Learning strategy	Contact hours	Student learning time (Hrs)						
Lecture	12	-						
Seminar	-	-						
Quiz	-	-						
Small Group Discussion (SGD)	-	-						
Self-directed learning (SDL)	-	-						
Problem Based Learning (PBL)	-	-						
Case Based Learning (CBL)	03	-						
Clinic	-	-						
Practical	24	-						
Revision	03	-						
Assessment	06	-						
TOTAL	48	-						

Assessment Methods:							
Formative:	Summative:						
Internal practical Test	Sessional examination						
Theory Assignments	End semester examination						
Lab Assignment & Viva	Viva						

Mapping of assessment with COs									
Nature of assessment	CO 1	CO 2	CO 3						
Sessional Examination 1	*	*							
Sessional Examination 2			*						
Assignment/Presentation	*								
Laboratory Examination	*	*	*						

Feedback Process	End-Semester Feedback
Reference Material	 "Applied Software Project Management" By Jennifer Greene, Andrew Stellman (O'Reilly Publications) 2005. "The Art of Project Management" By Scott Berkun (O'Reilly Publications) 2005.

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)				
Course Title:		Mini Project - 2				
Course Code: CDC 696		Course Instructor:				
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2				
No of Credits:	4	Prerequisites: Any programming language and circuit basics				
Synopsis:	Students are expected	to select a problem in the area of their interest and the area				
	of their specialization the	nat would require an implementation in hardware / software				
	or both in a semester					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1·	Apply the objectives of	the project work and provide an adequate background with				
	a detailed literature sur	vey				
<u> </u>	Breakdown the project	into sub blocks with sufficient details to allow the work to be				
CO 2.	reproduced by an indep	pendent researcher				
CO 3·	Compose hardware/sof	tware design, algorithms, flowchart, methodology, and block				
	diagram					
CO 4:	Evaluate the results					
CO 5:	Summarize the work ca	rried out				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	
CO 4						*					*
CO 5							*				

Course content and outcomes:					
Content	Competencies				
Phase 1	•				
Problem identification, synopsis	At the end of the topic student should be able to:				
submission, status submission, mid	1. Identify the problem/specification (C1)				
evaluation.	2. Discuss the project (C2)				
	3. Prepare the outline (C3)				
	4. Describe the status of the project (C2)				
	5. Prepare a mid-term project presentation report (C3)				
	6. Prepare and present mid-term project				
	presentation slides (C3, C5)				
	7. Develop project implementation in				
	hardware/software or both in chosen platform (C5)				
Phase 2					
Status submission, final evaluation.	1. Prepare the progress report (C3)				
	 Prepare the final project presentation report (C3) 				
	3. Prepare and present final project presentation slides (C3, C5)				
	4. Modify and Develop implementation in hardware/software or both in chosen platform				
	5. Justify the methods used and obtained results (C6)				

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	-	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	48	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	-	-				
Clinic	-	-				
Practical	-	-				
Revision	-	-				
Assessment	03	-				
TOTAL	51	09				

Assessment Methods:				
Formative:	Summative:			
Project Problem Selection	Mid-Term Presentation			
Synopsys review	Second status review			
First status review	Demo & Final Presentation			

Mapping of assessment with COs					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Mid Presentation	*	*			
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

Name of the Program:		Master of Engineering - ME (Cloud Computing)			
Course Title:		Seminar - 2			
Course Code: CDC 698		Course Instructor:			
Academic Yea	r: 2020 - 2021	Semester: First Year, Semester 2			
No of Credits:	1	Prerequisites: Communication Skill			
Synopsis:	1. To select, searc	h and learn technical literature.			
	2. To identify a cu	rrent and relevant research topic.			
	3. To prepare a to	ppic and deliver a presentation.			
	4. To develop the	skill to write a technical report.			
	5. Develop ability	to work in groups to review and modify technical content.			
Course					
Outcomes	On successful completion	on of this course, students will be able to			
(COs):					
CO 1:	Show competence in identifying relevant information, defining and explaining to				
	Chow compotence in working with a methodology structuring their and work a				
CO 2:	synthesizing information.				
CO 3·	Use appropriate registers and vocabulary, and will demonstrate command of vo				
0.5.	modulation, voice projection, and pacing.				
CO 4:	Demonstrate that they	have paid close attention to what others say and can respond			
CO 4.	constructively.				
	Develop persuasive spe	eech, present information in a compelling, well-structured,			
CO 5·	and logical sequence, respond respectfully to opposing ideas, show depth of				
	knowledge of complex s	subjects, and develop their ability to synthesize, evaluate and			
	reflect on information.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*							*	*		*
CO 2	*							*	*		*
CO 3	*							*	*		*
CO 4	*							*	*		*
CO 5	*							*	*		*

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning time (Hrs)				
Lecture	-	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	14	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	-	-				
Clinic	-	-				
Practical	-	-				
Revision	-	-				
Assessment	-	-				
TOTAL	14	-				

Assessment Methods:				
Formative:	Summative:			
Seminar Topic Selection				
Synopsys review				
PPT Review				

Mapping of assessment with Cos					
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5
Presentation	*	*	*	*	*

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen Seminar

Name of the P	rogram:	Master of Engineering - ME (Cloud Computing)			
Course Title:		Project Work			
Course Code: CDC 799		Course Instructor:			
Academic Yea	r: 2020 - 2021	Semester: Second Year, Semester 3, 4			
No of Credits:	25	Prerequisites: SDLC, Communication Skills, technical skills.			
Synopsis:	1. The project wo	rk aims to challenge analytical, creative ability and to allow			
	students to syr	thesize, apply the expertise and insight learned in the core			
	discipline.				
	2. Students build self-confidence, demonstrate independence, and develop				
	professionalism on successfully completion of the project.				
Course					
Outcomes	On successful completion of this course, students will be able to				
(COs):					
CO 1:	To be acquainted with working environment and processes that in place at the				
	relevant Industries.				
CO 2:	To familiarize the challenges as relevant professionals.				
CO 3:	Review the literature and develop solutions for real time on-board projects.				
CO 4:	Write technical report and deliver presentation.				
CO 5:	Apply engineering and management principles to achieve project goal.				

Mapping of COs to POs												
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1						*	*	*	*	*	*	
CO 2					*							
CO 3	*	*	*	*	*							
CO 4	*	*	*	*								
CO 5						*	*	*	*	*	*	

Course content and outc	omes:							
Content		Competencies						
Phase 1:								
Problem identificati	ion, synopsis	At the end of the topic student sh	ould be able to:					
submission, status s	ubmission, mid	1. Identify the problem/spec	cification (C1)					
evaluation.		2. Discuss the project (C2)						
		3. Prepare the outline (C3)						
		 Prepare a mid-term p report (C3) 	project presentation					
		5. Prepare and present presentation slides (C3, C	mid-term project 5)					
		6. Develop project ir	nplementation in					
		hardware/software or bo	th in chosen platform					
		(C5)						
Phase 2								
Status submission, final e	evaluation.	1. Prepare the progress repo	ort (C3)					
		 Prepare the final project (C3) 	presentation report					
		 Prepare and present final slides (C3, C5) 	project presentation					
		 Modify and Develop hardware/software or bo (C3, C5) 	implementation in th in chosen platform					
		 Justify the methods used (C6) 	and obtained results					

Learning strategies, contact hours and student learning time									
Learning strategy	Contact hours	Student learning time (Hrs)							
Lecture	-	-							
Seminar	-	-							
Quiz	-	-							
Small Group Discussion (SGD)	14	-							
Self-directed learning (SDL)	-	-							
Problem Based Learning (PBL)	-	-							
Case Based Learning (CBL)	-	-							
Clinic	-	-							
Practical	-	-							
Revision	-	-							
Assessment	-	-							
TOTAL	14	-							

Assessment Methods:									
Formative:	Summative:								
Project Problem Selection	Mid-Term Presentation								
Synopsys review	Second status review								
First status review	Demo & Final Presentation								

Mapping of assessment with COs											
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5						
Mid Presentation	*	*									
Presentation	*	*	*	*	*						

Feedback Process	End-Semester Feedback
Reference Material	Particular to the chosen project

PROGRAM OUTCOMES (POS) AND COURSE OUTCOMES (COS) MAPPING

Sl.No.	Course Code	Course Name	Credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
1	CSE 601	Data Structures and Algorithms	3	*	*		*		*					
2	CSE 602	Real Time Operating Systems	3	*	*	*	*							
3	CDC 602	Cloud Architecture and Management	3	*	*	*		*	*	*	*	*	*	*
4	ESD 603	Cloud Application Development with Java	3	*	*	*		*						
5	CSE-628	Client Side Internet Technology	3	*	*			*						
6	BDA-601	Fundamentals of Machine Learning	3	*	*	*	*							
7	CDC-607	DevOps for Cloud	3	*	*	*		*						
8	CSE 601L	Data Structures and Algorithms Lab	1		*	*	*	*						
9	CSE 602L	Real Time Operating Systems Lab	1		*	*	*	*						
10	CDC 602L	Cloud Architecture and Management Lab	1		*	*	*	*						
11	CDC 603L	Cloud Application Development with Java Lab	1		*	*	*	*						
12	CSE-628L	Client Side Internet Technology Lab	1	*	*			*						
13	BDA-601L	Fundamentals of Machine Learning Lab	1	*	*	*	*							
14	CDC-607L	DevOps for Cloud Lab	1	*	*	*		*						
15	ESD 695	Mini Project - 1	4				*	*	*	*	*		*	*
16	ESD 697	Seminar - 1	1											
17	BDA 614	Big Data and Data Visualization	3	*	*	*	*			*				
18	CDC 604	Cloud Networks	3	*	*	*	*							

19	CDC 605	Cloud Security	3	*	*	*	*	*					*	
20	CDC 606	Cloud Database Management	3	*	*			*						
21	CSE-629	Server Side Internet Technology	3											
22	CSE-630	Data Warehousing and Data Mining	3											
23	BDA-605	Machine Learning for Big Data	3	*	*	*	*							
24	ENP-601	Entrepreneurship	3	*		*	*		*		*		*	
25	CSE-631	IT Project Management	3	*	*	*								
26	BDA 614L	Big Data and Data Visualization Lab	1		*	*	*	*						
27	CDC 604L	Cloud Networks Lab	1		*	*	*	*						
28	CDC 605L	Cloud Security Lab	1	*	*	*		*						
29	CDC 606L	Cloud Database Management Lab	1		*	*	*	*						
30	CSE-629L	Server Side Internet Technology Lab	1											
31	CSE-630L	Data Warehousing and Data Mining Lab	1											
32	BDA-605L	Machine Learning for Big Data Lab	1	*	*	*	*							
33	ENP-601L	Entrepreneurship Lab	1	*					*		*			
34	CSE-631L	IT Project Management Lab	1			*	*	*				*		
35	CDC 696	Mini Project - 2	4				*	*	*	*	*		*	*
34	CDC 698	Seminar - 2	1	*							*	*		*
35	CDC 799	Project Work	25	*	*	*	*	*	*	*	*	*	*	*